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Mobile robots have been increasingly popular as a replacement for human labor,

especially in hazardous or challenging environments. Recent advancements in LiDAR

technologies have greatly enhanced the sensing ability of mobile robots with longer range,

denser measurements, and higher accuracy. This presents great potential for mapping

systems to achieve a more comprehensive understanding of the environment. However,

improved sensing ability of LiDAR sensors (e.g., dense measurements) also poses sig-

nificant efficiency challenges in real-time scenarios to create a general and consistent

representation of the environments. This thesis addresses critical challenges related to

computational efficiency in LiDAR mapping, with a focus on two typical modules in

robotics: simultaneous localization and mapping (SLAM) and occupancy mapping.

The contributions of this thesis are as follows:

Firstly, this thesis proposes a new data structure, the incremental k-d tree (ikd-

Tree), to efficiently manage LiDAR point clouds. The ikd-Tree supports incremental up-

dates including point-wise and box-wise operations of insertion, delete, and re-insertion,

providing a high level of flexibility for mapping and navigation in robotic applications.

To ensure the efficiency of incremental updates and nearest neighbor search, the ikd-

Tree employs a twin-threaded re-balancing mechanism that partially rebuilds unbalanced

(sub-)trees after each update. The efficiency of the proposed ikd-Tree is validated with

a theoretical time complexity analysis as well as benchmark experiments, which demon-

strate its superior performance compared to static k-d trees.
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Secondly, this thesis presents FAST-LIO2, a fast, accurate, and versatile LiDAR-

inertial framework. FAST-LIO2 takes advantage of the high efficiency of ikd-Tree to

incrementally register raw points into a point cloud map, eliminating the need for ex-

tracting geometric features (e.g., planes and edges) and fully exploiting subtle environ-

mental features. This approach results in significantly improved accuracy and robust-

ness in cluttered environments. Moreover, the removal of the feature extraction module

enables FAST-LIO2 to be adaptive to a wide range of emerging LiDAR sensors with

different scanning patterns. This thesis also presents exhaustive experiments for valida-

tion, including benchmark comparison of accuracy and efficiency against state-of-the-art

methods, as well as real-world applications on both handheld and aerial platforms. The

results demonstrate the superior performance of FAST-LIO2 compared to other methods

and highlight its generality in various challenging scenarios.

Finally, this thesis introduces D-Map, an efficient occupancy mapping framework for

high-resolution LiDAR sensors with three key novelties. Firstly, D-Map utilizes a depth

image for occupancy state determination as an alternative to ray casting. Secondly,

an on-tree update strategy is proposed on a tree-based map structure that reduces the

amount of redundant updates. Thirdly, D-Map takes advantage of the low false-alarm

rate of LiDAR sensors to directly remove known cells from the map, resulting in a

decreasing map size that improves computational and memory efficiency due to the

decreasing map size. This thesis presents extensive benchmark experiments to validate

the superior efficiency of D-Map compared to existing methods and demonstrates its

effectiveness in real-world applications for real-time occupancy mapping using high-

resolution LiDAR sensors.

(480 words)
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Chapter 1

Introduction

1.1 Background

Mobile robots are becoming increasingly important in various scenarios, as they

could potentially replace humans in performing challenging and laborious tasks. Re-

searchers have been investigating the usage of robotics in the field of agriculture [1,

2]. Mobile robots are also deployed in hazardous or extreme environments, such as

caves [3], subarctic glaciers [4], and nuclear radioactive facilities [5], as shown in Fig-

ure 1.1. Furthermore, mobile robots like the Curiosity rover and Ingenuity helicopter

have been deployed for space exploration beyond Earth [6]. Scientists at ETH Zurich

are also researching technologies for legged robots to conduct planetary exploration [7].

One of the key capabilities needed to achieve success of these challenging field tasks is

the ability for robots to perceive and comprehend the surrounding environment, which

relies on two core components: onboard sensors and mapping systems.

Onboard sensors serve as the robot’s eyes to perceive the surrounding environment.

One primary function of onboard sensors is to accurately determine the self-location

of robots and measure distances to objects, thereby facilitating the fundamental task

of navigation from one point to another. In addition, sensors are expected to capture

implicit information from the environment, enabling a comprehensive understanding of

the surroundings, including semantic details.

Since the beginning of modern robotics, cameras have played a pivotal role in vari-

ous applications, including self-localization [8–11], occupancy mapping [12–14], metric-

semantic mapping [15, 16], and scene understanding [17, 18]. These applications have
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Figure 1.1: (a) A composite image demonstrates an unmanned aerial vehicle (UAV)
conducting autonomous exploration in a cave, taken from [3]. (b) A mobile robot is
navigating autonomously on a 0.7m compacted snow cover in subzero temperatures,
taken from [4]. (c) A mobile robot carrying a manipulator is navigating through a
hazardous area to remove a contaminated object, taken from [5].
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demonstrated the remarkable efficacy of cameras in providing crucial environmental in-

formation to robots, even in complex tasks. However, it is important to note that the

performance of vision-based algorithms is affected by the illumination conditions of the

environment. The robots in the dark need to carry their own light sources. Consequently,

their practical utility is limited in scenarios with low light or inadequate illumination,

such as caves or environments with limited light. Moreover, the presence of motion blur

in captured images further restricts their applicability, particularly for high-dynamic

robots such as unmanned aerial vehicles (UAVs).

In the past decade, advancements in 3D Light Detection and Ranging (LiDAR)

sensors have led to the development of products that are cost-effective, lightweight, and

energy-efficient. As a result, LiDARs have become a crucial sensor for robots which

provides direct, active, dense, and accurate depth measurements [19, 20]. Unlike visual

sensors that rely on passive mechanisms and incoming light to generate images, LiDAR

sensors actively emit laser pulses and precisely measure the time it takes for these pulses

to return after interacting with objects in the environment. This active approach en-

ables LiDAR sensors to provide highly accurate depth measurements (e.g., centimeter

accuracy at hundreds of meters measuring range [21]). Moreover, significant advance-

ments in LiDAR technology have resulted in the generation of point clouds comprising

several million points per second. This dense and accurate sampling of the environ-

ment enhances a robot’s perception capabilities. Additionally, LiDAR sensors boast an

extended detection range, surpassing that of depth cameras, often exceeding 100 me-

ters [22]. Consequently, robots equipped with LiDAR sensors can achieve a broader field

of view in their perception tasks. It is worth noting that early LiDARs were bulky due

to mechanical rotating mechanisms. However, recent technological advancements have

facilitated the commercialization and mass production of lightweight LiDARs, weighing

as little as 260g, with affordable price points (e.g., hundreds of dollars) and exceptional

performance [23]. These developments have positioned LiDAR sensors as suitable and

promising sensors for integration into robots, offering immense potential for various

applications.

With onboard sensors serving as the eyes on the robot, a mapping system acts as the

brain for the robot to comprehend the surrounding information. Typically, a mapping

system on a robot aims to build a general and persistent scene representation to include
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multiple levels of information such as geometry, appearance, and semantics[24]. Given

the strong ability of LiDARs to obtain accurate depth measurements from surroundings,

this thesis focuses on a LiDAR mapping system aiming to create a scene representation

that is close to real 3D geometry and understandable for robots. Specifically, this thesis

addresses the efficiency issues in LiDAR mapping within two typical modules in robotics:

Simultaneous Localization and Mapping (SLAM) and Occupancy Mapping. The former

plays a crucial role in providing accurate self-localization to the robot, while the latter

supports autonomous navigation by helping the robot to reason about the unknown and

known regions of the environment.

1.2 LiDAR SLAM

Simultaneous Localization and Mapping (SLAM) is a crucial task in robotics that

aims to create a real-time estimation of the shape and structure of the surrounding en-

vironment while simultaneously determining the robot’s self-location [25]. The acronym

“SLAM” was first introduced at the 1995 International Symposium on Robotics Re-

search, where the formulation of the SLAM problem and its convergence result were

presented [26]. Early research in SLAM primarily focused on utilizing visual sensors [27,

28], laser range finders [29, 30], and sonar sensors [31, 32] to address the problem. A sig-

nificant breakthrough in LiDAR SLAM, LOAM[33], was presented at the 2014 Robotics:

Science and Systems conference, where a systematic solution for real-time odometry and

mapping was proposed. In LOAM[33], the complex problem of SLAM was divided into

two sub-problems: odometry and mapping, which were solved in parallel at different

rates. This section follows a similar division by discussing the state estimation and

mapping of LiDAR SLAM separately, with a primary focus on the mapping part.

1.2.1 State Estimation

State estimation in LiDAR SLAM involves estimating a set of physical attributes

of a robot, such as position, velocity, and orientation. Typically, there are two steps

involved in estimating robot states using a LiDAR sensor. The first step involves

finding correspondences between current LiDAR measurements and either the recent
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scan (scan-to-scan matching) or the historical map (scan-to-map matching). Correspon-

dences found through scan-to-scan matching provide an approximate estimation of the

relative position to the recent scan, while scan-to-map matching provides a more accu-

rate and reliable estimation with lower drift. However, the accuracy and efficiency of

mapping heavily influence scan-to-map matching, which will be discussed in Chapter 3.

The second step aims to optimize the robot state such that the residuals between the

correspondence and the current measurement are minimized. Filter-based and graph

optimization-based approaches have been extensively investigated in this regard. Filter-

based methods, particularly Kalman filters and their variants, estimate the current state

by assuming optimal estimation of previous states. These methods are favored for pro-

viding a high-frequency estimation of the robot’s state due to their low computational

complexity [34–38]. In contrast, graph optimization-based approaches optimize states

over an interval, typically serving as the backend to achieve higher estimation accuracy

at a lower rate [33, 39, 40].

1.2.2 Mapping

Mapping in LiDAR SLAM aims to incrementally build a geometric map of the

unknown environment with high fidelity. LiDAR mapping involves two core components:

the map representations and map structures. Specifically, the former involves abstracting

information to represent the geometric structure, while the latter serves as the container

to manage the various types of information that support access, update, and association.

1.2.2.1 Map Representations

The nature of LiDAR measurements is essentially point clouds which are sampled

points of object surfaces in the surrounding environments. Consequently, the primary

objective of map representations is to maximize the utilization of the sampled informa-

tion from LiDAR measurements to reconstruct the geometric surfaces in high fidelity.

The most straightforward and commonly used representation of an environment for

LiDAR mapping is to use the point cloud itself. In early research [33, 41, 42], a feature

extraction module was employed to extract geometric points from each LiDAR scan, as

shown in Figure 1.2. These features were then used to create a point cloud map for

correspondence matching. This type of map representation has been widely adopted in
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subsequent works [38, 40, 43–48]. However, there are three critical drawbacks associated

with feature extraction. Firstly, the feature extraction module is limited in its gener-

ality, as it requires handcrafted designs to accurately extract geometric features from a

single LiDAR scan. This poses challenges when dealing with LiDARs that have differ-

ent scanning patterns or sparse measurements, making it difficult to extract geometric

features effectively [49, 50]. Secondly, extracting features from each LiDAR scan results

in non-feature points being discarded, leading to unexpected information loss. This loss

of information reduces the efficacy of creating a high-fidelity geometric representation

of the environments. Lastly, the feature extraction process incurs additional computa-

tional load, which is at least linearly proportional to the number of LiDAR points. This

limits its ability to keep pace with the increasing number of measurements from LiDAR

sensors.

Figure 1.2: An illustration of feature extraction from point cloud, taken from [43].
(a) The original point cloud. (b) The green and pink points represent edge and planar
features, respectively.

Another commonly used geometric representation for LiDAR mapping is planes

with parameterized representations, as any curved surface in the environment can be

approximated by a combination of small planes. An illustration of planar representation

is shown in Figure 1.3. Surfel, an abbreviation acronym for a “surface element”, was first

introduced in [51] and widely applied in visual SLAM [52–57]. It is firstly introduced

into the LiDAR SLAM community in [58], followed by several research studies aiming

to improve its efficiency and accuracy. In [59] and [60], surfels were maintained in a

multi-resolution map by merging valid ones from the finest solution to coarser solutions.

Probabilistic representations of surfels were introduced in [61] and [62] to consider the

noise in LiDAR measurements. Although surfels are a good representation of planar ge-

ometry, the extraction of surfels relies on projection to a range image, which is sensitive
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to the sparsity and irregularity of LiDAR measurements. Instead of extracting planar

features on projected range images, Yuan et al. proposed constructing a hierarchical

voxel map in a coarse-to-fine manner, in which each voxel stores a plane with explicit

parameterization[63]. The explicit parameters describe not only the position and nor-

mal of a plane but also the covariance, allowing for a probabilistic representation that

considers the uncertainty from both pose estimation and LiDAR measurements. Wu et

al. further enhance [63] by introducing a merging strategy of small planes that leads

to increased accuracy and efficiency [64]. Liu et al. presented a general mathematical

representation of point clouds, named point clusters, which can generalize to represent

plane, edge, and point features without information loss [65]. Although planes with

parameterized representations provide efficiency in both computation and memory with

satisfactory accuracy, the drawback of plane representations in [63–65] is the voxelization

process to decide the clustering of points to form a plane. This process has the possibil-

ity of incorrectly dividing points belonging to different planes into the same voxel due

to the discretization error. Additionally, correspondence matching of planar features is

also limited within a voxel since no nearest neighbor search is applied in these methods.

Therefore, the scan matching requires a good initial guess of the robot’s state to ensure

that planar features of the current scan are placed into the correct voxel for matching.

Figure 1.3: An illustration of the plane representation in [63].

Meshes are a widely-used representation of geometric structure in the computer

graphics community comprised of faces, edges, and vertices, as shown in Figure 1.4. In

the field of 3D geometry, triangle meshes have gained popularity due to the simplicity

and ability to approximate complex environments effectively. Compared to point clouds
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and planes, meshes offer several advantages. They avoid the voxelization problem and

provide dense, smooth, and complete surface reconstructions. Moreover, meshes are

memory-efficient and retain topological information of the environments [66, 67]. How-

ever, the application of meshes in LiDAR SLAM faces challenges in real-time construc-

tion and updates of a mesh map. KinectFusion [68] was a breakthrough to reconstruct

a mesh online, which updates a truncated signed distance field (TSDF) and utilizes the

Marching Cubes algorithm [69] to construct a triangle mesh. Subsequent research has

improved this approach, enabling its usage in large-scale scenarios [54, 70], adaptive res-

olution [71, 72], and achieving better efficiency [73–75]. However TSDF-based methods

were not computationally efficient, necessitating GPU acceleration for real-time mesh

construction and updates. Instead of following the two-step pipeline, Vizzo et al. pro-

posed leveraging Poisson surface reconstruction [76] directly on point clouds in LiDAR

SLAM [77]. The mesh map in [77] is not incrementally updated at each scan but recon-

structed from point clouds aggregating N historical scans. Another recent development

by Lin et al. proposed ImMesh, which can directly and incrementally construct triangle

mesh from LiDAR measurements in real-time on a CPU platform [78]. Although the lo-

calization in ImMesh leverages the technologies in [63], its real-time ability to construct

mesh online lays a solid foundation for subsequent research utilizing mesh structures in

LiDAR SLAM.

Figure 1.4: An illustration of the mesh representation in [78].

In addition to the map representations mentioned above, there are other representa-

tions in LiDAR SLAM that have been proposed. One such representation is the normal

distribution transform (NDT) which fits a Gaussian distribution from the point cloud

within a voxel [79–81], as shown in Figure 1.5(b). There were several studies exploring
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the usage of NDT in LiDAR SLAM [82, 83]. Although NDT shows higher robustness in

initial poses, its convergence is less predictable when compared with ICP [84], limiting its

wider application. The Gaussian mixture model (GMM) was first introduced into LiDAR

SLAM by Wolcott and Eustice, which characterized the distribution of z-height in each

cell of a 2D grid structure [85, 86]. Later, [87, 88] introduced 3D mapping approaches

that fit GMMs over 3D point cloud data, as shown in Figure 1.5(d). However, these

methods suffered from the expensive computational cost of Expectation Maximization

(EM) and sensitivity to initial parameters. Semantic information has also been incorpo-

rated to enhance LiDAR SLAM in approaches such as SuMa++ [89]. An illustration of

the semantic LiDAR map is shown in Figure 1.5(e). SuMa++ used RangeNet++ [90]

to generate semantic labels for each LiDAR point and integrates the refined labels into

the surfel map. Furthermore, a semantic Iterative Closest Point (ICP) algorithm is pro-

posed to improve pose estimation accuracy. The potential of semantic information in

SLAM has recently been demonstrated in studies such as [15, 16]. However, a significant

gap still exists in the widespread utilization of semantic information in LiDAR SLAM,

primarily due to the limited generalizability of LiDAR segmentation models.

1.2.2.2 Map Structures

Map structures are crucial in LiDAR SLAM as they serve as containers for map

representations, facilitating the access, update, and data association of geometric (and

semantic) information. The functions of access and data association are both applicable

in supporting scan-to-map matching in LiDAR SLAM. The data association function

returns data with specific metrics (e.g., nearest neighbors), while the access function

directly returns the data by index. The update operation incrementally integrates in-

coming information from LiDAR sensors to construct the map.

In the field of LiDAR SLAM, there are four commonly used data structures: arrays,

hash tables, trees, and graphs. To gain a comprehensive understanding of these data

structures, we analyze each based on computational efficiency for access, update, and

data association, as well as their memory efficiency for data storage.

Arrays and hash tables are among the simplest data structures employed in LiDAR

SLAM. Typically, the space is divided into dense axis-aligned voxels at a predetermined

resolution, and map representations can be stored into an element of the array or hash
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Figure 1.5: Illustrations of Various Map Representations. (a) depicts the original point
cloud, while (b) showcases the NDT representation, taken from [81]. (c) exhibits the
original colored point cloud, and (d) represents it using GMM, sourced from [88]. (e)
presents the semantic map created in SuMa++ [89].
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table by mapping the spatial location to the corresponding voxel index. The arrays

and hash tables are suitable for managing information in real-time because of their high

efficiency in data access and updates. However, since there is no explicit relationship be-

tween elements inside an array or a hash table, data association can be time-consuming,

as it requires searching the entire storage to have a complete and accurate check of any

possible association. Consequently, LiDAR SLAM algorithms that use arrays or hash

tables as map structures often assume that the related data is stored either inside the

same element [41, 63–65] or neighboring elements [91] to avoid expensive traversal over

the entire storage. However, this assumption relies heavily on a good initial guess for

the robot’s state and may fail under aggressive motion or large drift. When compar-

ing arrays against hash tables, although both require memory pre-allocation, the latter

is more commonly used due to its more flexible memory allocation ability and higher

memory efficiency. Hash conflicts are the main concern for hash tables, which, without

a well-designed hashing function and algorithm, can lead to a significant decrease in

computational efficiency.

Trees represent a form of data structure that stores information based on a given

rule (e.g., an octree for hierarchical structuring or an ordered tree for sequential ar-

rangement). Compared to arrays and hash tables, tree structures are more efficient in

data association due to their ordered organization of information, but require a higher

cost in data access and update to manage the data order. K-Dimensional trees (k-d

trees) [92] and octrees [93] are two typical and popular tree structures that have been

widely employed in LiDAR SLAM algorithms. A k-d tree is a binary tree that splits

space by hyperplanes, and has been proven to be the most efficient data structure for

nearest neighbor search in low dimensions [94], making it favored in many LiDAR SLAM

algorithms for correspondence matching. An octree is a prefix-tree (also known as a trie

in computer science) in which child nodes share the same prefix. When applied to space

partitioning, an octree is particularly suitable for representing space in a hierarchical

structure, in which the space represented by child nodes is encapsulated inside its ances-

try nodes. When comparing k-d trees and octrees, the latter exhibits higher performance

in access and update capabilities, while the former is more suitable for data association.

The memory efficiency of k-d trees, which is O(n), is also better than that of octrees,

which is O(n log(n)), where n is the number of spatial data points.
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A graph is a structure composed of vertices and edges, which naturally provides

a strong representation for the topological connection of different objects in an envi-

ronment. This strong data association capability comes at the cost of time-consuming

access and update operations, as traversing the entire graph is often required to find

the corresponding vertices. Recent research in the visual SLAM community has utilized

graphs to represent topological connections with the aid of semantic understanding [15,

16]. However, in LiDAR SLAM, graphs are typically used for pose graph optimization

rather than representing the surrounding environment. When considering the incor-

poration of semantic information with geometric structures in LiDAR SLAM, a graph

structure serves as a promising alternative for high-level organization.

In conclusion, Table 1.1 summarizes a qualitative comparison of the capabilities of

different data structures in this section.

Table 1.1: Qualitative Comparison of Capabilities among Different Map Structures

Arrays Hash Tables Trees Graph
octree k-d tree

Access and Update Strongest Strong Moderate Weak Weakest
Data Association Weakest Weak Moderate Strong Strongest
Memory Efficiency Weakest Weak Moderate Strong Strong

1.2.3 Challenges

The high accuracy of depth measurements in LiDAR sensors inherently offers sig-

nificant potential for enhancing the precision of LiDAR SLAM. However, the sparsity

of measurements in LiDAR, as compared to visual sensors, introduces new challenges in

LiDAR mapping. In visual SLAM, a sparse map is sufficient to enable the scan match-

ing due to the dense measurements of the visual sensors, as shown in Figure 1.6(a). In

contrast, LiDAR SLAM necessitates a dense map for effective scan matching due to its

sparse measurements, as shown in Figure 1.6(b). As a result, map representations for

LiDAR sensors must capture the geometry of environments as densely as possible.

Furthermore, maintaining a dense map significantly increases the computational

load on the map structure, which has become a bottleneck that restricts the advancement

of LiDAR SLAM. Considering the limited computational resources in mobile robots, the
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development of a more efficient map structure is essential. This would allow for more

computational power to manage denser and more complex maps, ultimately enhancing

the accuracy and robustness of LiDAR SLAM.

Figure 1.6: An illustration of maps with different sparsity. (a) showcases a feature
point map using visual SLAM. (b) visualizes the point cloud map (colored by intensity)
and the sparse measurements (white points) created using a LiDAR sensor.

1.3 Occupancy Mapping

Occupancy mapping addresses the problem of creating consistent maps from noisy

and uncertain measurement data, under the assumption that the robot pose is known

from a odometry algorithm [95]. Different from maps in LiDAR SLAM that only rep-

resent geometric structures, the maps in occupancy mapping are volumetric maps that

represent occupied, free, and unknown spaces of the environment. In this section, we

separately discuss the discrete and continuous occupancy representations, followed by

popular map structures to manage the occupancy information.

1.3.1 Occupancy Representations

Figure 1.7: An illustration of discrete representations sourced from [96]. (a) depicts
the original point cloud. (b) visualizes only the occupied voxels in the octree. In (c),
white and black voxels represent free and occupied space, respectively.
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Discrete representations are widely used for occupancy mapping due to their sim-

plicity and efficiency. A common discrete representation partitions the space into evenly

distributed 2D grids or 3D voxels, where each grid or voxel is represented by a Bernoulli

random variable indicating its occupancy probability. By assuming spatial independence

between neighboring voxels, this representation allows for efficient updates of occupancy

probabilities on each voxel. This approach is known as occupancy grid mapping. Early

research was conducted in [97] and [98], while the concept was systematically introduced

in [95]. The occupancy grid mapping framework was further extended to 3D using octree

in Octomap [96], which leveraged a log-odd function to reduce computation complex-

ity. Figure 1.7 depicts an illustration of the discrete representation using Octomap.

Although subsequent works mainly focus on addressing issues related to memory con-

sumption and computational efficiency from the map structure side, to the best of the

author’s knowledge, there have been very few significant modifications or improvements

made to the probability representation itself in occupancy grid mapping. Another dis-

crete representation is the Euclidean signed distance field (ESDF) that computes the

Euclidean distance to the closest surface at each evenly distributed voxel. While most of

the research obtains ESDF representations from the occupancy grid map, Voxblox [99]

directly builds a ESDF map from TSDF data. However, Voxblox suffers from inaccuracy

in the estimation of Euclidean distance because of the approximated conversion from

TSDF TO ESDF data [100].

Figure 1.8: An 2D illustration of continuous map representations taken from [101]. (a)
depicts the laser measurements (blue dots) and the robot pose (red dots). (b) visualizes
the occupancy probability respect to location in Gaussian process occupancy mapping.

Continuous map representations assume spatial correlation in neighboring spaces
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considering the physical structure of environments. A 2D illustration of the continu-

ous representation is shown in Figure 1.8. The earlier attempts by [102, 103] trained

curves and polygon random fields from range samplings to represent the boundaries

and occupancy probabilities of the environments. O’Callaghan and Ramos proposed a

non-parametric approach using Gaussian processes to estimate continuous occupancy

distributions in 2D space [101]. However, Gaussian processes require storing all N mea-

surements from an entire mapping dataset to estimate the covariance function and an

invert operation with time complexity of O(N3) to predict the occupancy of a test po-

sition. Although the authors mentioned that clustering the measurements in proximity

to create a local model could avoid using all measurements, a new covariance matrix

must be built at each query of a new position. Subsequent works such as GPmap [104],

GPOctomap [105] and BGKOctomap-L [106] extended the Gaussian process occupancy

maps into 3D and utilized octrees [93] for space partitioning, but still relied on storing

raw measurements for occupancy prediction.

Apart from non-parametric approaches, semi-parametric methods cluster raw mea-

surements into parameterized functions (e.g., Gaussians and kernels) instead of stor-

ing the raw measurements themselves. NDT-OM [107] partitioned space into voxels,

with each voxel containing a Gaussian to represent the measurements within it, but

faced severe discretization errors in unstructured environments. A similar approach,

confidence-rich mapping, considered the correlation within a measurement cone of a sen-

sor to provide uncertainty estimation for planning and exploration [108]. The Hilbert

map [109] and its variants [110–112] utilized kernel feature approximations to reduce

the time complexity of inference down to O(N). Occupancy maps based on Gaussian

mixture models were also investigated, variants using hierarchical structures [113] and

various resolution [114].

Although continuous occupancy mapping approaches effectively consider spatial

correlation and provide uncertainty estimation, there remains a significant gap in compu-

tational efficiency compared to discrete representations, which hinders their widespread

deployment in real robotic systems.
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1.3.2 Occupancy Map Structures

As discrete representations divide the space into evenly distributed 2D cells or 3D

voxels, the early research utilized arrays to store grids, typically known as uniform grid

maps [115]. However, a critical drawback of the uniform grid maps is their tremendous

memory consumption, which prevents their application in high-resolution and large-scale

mapping. Nonetheless, uniform grid maps offer the strongest efficiency in updating and

querying compared to other map structures to be discussed in this section, due to their

continuous memory allocation. Thus, uniform grid maps are well-suited for occupancy

mapping in a local space [116].

To reduce the memory consumption in uniform grid maps, hashing techniques were

introduced to organize the cells (or voxels) [117]. Rather than pre-allocating memory for

each cell (or voxel), the hashing-based grid map allocates a smaller array. The hashing

technique uses a hash function to generate a hash value for each voxel to indicate its

index in the array. The design of the hashing function is critical to minimizing the

conflict rate, and a smart strategy is also required to deal with possible conflicts to avoid

information loss. The hashing grid map allows dynamic map resizing through rehashing

and reallocation, thus not requiring knowledge of the mapping area beforehand [99].

Compared to uniform grid maps, hashing grid maps possess higher memory efficiency

and better dynamic ability. However, the computational efficiency of hashing grid maps

is lower than that of uniform grid maps due to hash conflicts and a lower cache hit

rate [118].

Quadtrees and octrees are useful data structures for organizing voxels at various

resolutions and have become popularly used in occupancy grid mapping [96, 119]. These

tree-based map structures exhibit superior memory efficiency compared to uniform grid

maps and hashing grid maps, making them favorable for high-resolution maps and large-

scale environments. However, the time complexity for updating occupancy probabilities

in a tree structure is logarithmic, while that in grid maps is constant. Consequently,

subsequent research has focused on enhancing update efficiency without compromising

original accuracy and memory efficiency [72, 120–124]

The occupancy map structures for continuous representation are similar to those
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for discrete representations. Grid maps and tree-based maps are used to store raw mea-

surements [104–106] or parameterized clusters of raw measurements [107, 108, 113, 114].

Another data structure worth mentioning is the R-tree [125] which is used to organize

GMMs without evenly partitioning the space, thus avoiding discretization errors [126].

1.3.3 Challenges

Although previous research in the field of occupancy mapping has been deployed

on LiDAR sensors, there remains significant challenges in the computation efficiency

due to the long detection range and dense measurements of LiDAR sensors. Further-

more, to fully exploit the high accuracy offered by LiDAR sensors, there is a preference

for high-resolution maps to accurately represent the environment, either in the form

of a high-resolution occupancy grid map or a continuous map. However, these require-

ments introduce a substantial computational burden. This challenge becomes even more

pronounced when attempting to implement existing occupancy mapping approaches on

robotic systems, as the computational resources are often strictly limited due to payload

constraints, such as on unmanned aerial vehicles (UAVs). Consequently, there remains

an unsolved problem of how to further enhance computational and memory efficiency to

enable LiDAR-based occupancy mapping on robots.

1.4 Thesis Outline

This thesis presents novel designs in map representations and structures to tackle

the efficiency challenges encountered in LiDAR SLAM and occupancy mapping. The

first contribution is the introduction of an incremental k-d tree (ikd-Tree), a new data

structure that enables efficient and dynamic map management. Subsequently, the high

efficiency of the ikd-Tree is fully leveraged in the development of a LiDAR-inertial frame-

work called FAST-LIO2, leading to significant improvements in efficiency, accuracy, and

robustness compared to state-of-the-art methods. Additionally, this thesis proposes a

novel occupancy mapping structure called D-Map to address efficiency issues in occu-

pancy mapping for high-resolution LiDAR sensors. The remaining chapters of this thesis

are organized as follows:
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Chapter 2 addresses the limited ability for static k-d trees to manage a stream of

sequentially LiDAR point clouds coming from the sensor. This chapter introduces the

ikd-Tree, which includes incremental functions such as point-wise updates and box-wise

updates that are useful in robotic applications. As these incremental updates can de-

grade the tree’s efficiency for the destroyed balance property, it is crucial to preserve its

balance following updates to maintain high computational efficiency in a k-d tree. The

ikd-Tree monitors the balance property online and utilizes a twin-threaded re-balancing

strategy to reconstruct unbalanced (sub-)trees when they exceed a given balance thresh-

old. Additionally, the ikd-Tree is equipped with an on-tree down-sampling mechanism

that limits the tree size in bounded environments. The experimental results show that

the proposed ikd-Tree achieves superior performance in terms of computational effi-

ciency compared to traditional k-d trees. The effectiveness of the ikd-Tree in managing

sequentially incoming LiDAR point clouds is demonstrated in real-world experiments.

Chapter 3 introduces a fast, robust, and versatile LiDAR-inertial odometry frame-

work named FAST-LIO2. The proposed framework leverages the ikd-Tree in the map-

ping module to effectively manage a point cloud map as the geometric representation

of the environment. Specifically, the use of ikd-Tree allows for incremental registration

of incoming point clouds and facilitates the management of a local map at a bounded

size via the box-wise delete function with a logarithmic time complexity. The dynamic

balancing ability of the ikd-Tree ensures consistent computational efficiency in incre-

mental updates and nearest neighbor search. As a result, the efficient mapping module

enables the usage of raw points in FAST-LIO2 without the need for feature extraction.

This approach significantly enhances the overall efficiency, accuracy, and robustness of

the proposed framework. FAST-LIO2 demonstrates superiority in extensive benchmark

experiments when compared to state-of-the-art LIO frameworks. The effectiveness of

FAST-LIO2 in accurately estimating a robot’s pose and mapping the environment in

real-time is also validated through real-world experiments.

Chapter 4 proposes a novel occupancy mapping framework, termed D-Map, to ex-

ploit the full potential of LiDAR sensors. The recent advancements in LiDAR technology

have led to longer detection ranges, denser measurements, and higher accuracy. How-

ever, significant challenges remain in the computational and memory efficiency required

to process large amounts of LiDAR measurements in a high-resolution and large-scale
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occupancy map. D-Map proposes a depth image projection-based approach to determine

the occupancy state, followed by an on-tree update strategy in a hybrid map structure

to achieve high efficiency in occupancy updates. The hybrid map structure contains a

hashing grid map for efficient updates of occupied space and an octree for managing

dense known space with high memory efficiency. The high accuracy and low false alarm

rate of LiDAR sensors are also leveraged to decrease the map size of D-Map which fur-

ther enhances both computational and memory efficiency. The results of benchmark

and real-world experiments demonstrate the effectiveness of D-Map in improving the

computational and memory efficiency while maintaining comparable mapping accuracy.

Chapter 5 concludes this thesis by summarizing the contents and highlighting the

contributions of the proposed mapping approaches. Limitations of these approaches are

also discussed to provide a comprehensive understanding of their scope and potential

for future research. Based on previous research experiences and insights, three potential

directions for future work are discussed. The first direction involves creating a consis-

tent map that is robust to inaccurate pose estimation, dynamic scenarios, and temporal

changes. The second direction involves pursuing a more comprehensive understanding

of surrounding environments through multi-modal sensor fusion and collaborative map-

ping. The last direction involves exploring heterogeneous computational structures for

mapping, discussing possible approaches to utilizing a combination of parallel and serial

computation architectures along with their advantages.
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Chapter 2

ikd-Tree: An Incremental K-D

Tree for Robotic Applications

In this chapter, we will present an efficient data structure, ikd-Tree, for dynamic

space partition. The ikd-Tree incrementally updates a k-d tree with new coming points

only, leading to much lower computation time than existing static k-d trees. Besides

point-wise operations, the ikd-Tree supports several features such as box-wise operations

and down-sampling that are practically useful in robotic applications. In parallel to the

incremental operations (i.e., insert, re-insert, and delete), ikd-Tree actively monitors the

tree structure and partially re-balances the tree, which enables efficient nearest point

search in later stages. The ikd-Tree is carefully engineered and supports multi-thread

parallel computing to maximize the overall efficiency.

2.1 Introduction

The K-Dimensional Tree (K-D Tree) is an efficient data structure that organizes

multi-dimensional point data [92] which enables fast search of nearest neighbors, an

essential operation that is widely required in various robotic applications [127]. For

example, in LiDAR odometry and mapping, k-d tree-based nearest point search is crucial

to match a point in a new LiDAR scan to its correspondences in the map (or the previous

scan) [33, 43, 50, 128–130]. Nearest point search is also important in motion planning

for fast obstacle collision check on point-cloud, such as in [131–136].
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Commonly-used k-d tree structure in robotic applications [137] is “static”, where the

tree is built from scratch using all points. This contradicts with the fact that the data is

usually acquired sequentially in actual robotic applications. In this case, incorporating a

frame of new data to existing ones by re-building the entire tree from scratch is typically

very inefficient and time-consuming. As a result, k-d trees are usually updated at a low

frequency [33, 43, 50] or simply re-built only on the new points [133, 134].

To fit the sequential data acquisition nature, a more natural k-d tree design would

be updating (i.e., insert and delete) the existing tree locally with the newly acquired

data. The local update would effectively eliminate redundant operations in re-building

the entire tree, and save much computation. Such a dynamic k-d tree is particularly

promising when the new data is much smaller than existing ones in the tree.

However, a dynamic k-d tree suitable for robotic applications brings several chal-

lenges: 1) It should support not merely efficient point operations such as insertion

and delete but also space operations such as point-cloud down-sampling; 2) It easily

grows unbalanced after massive point or space operations which deteriorates efficiency

of queries. Hence re-building is required to re-balance the tree. 3) The re-building should

be sufficiently efficient to enable real-time robotic applications.

Even though some existing dynamic data structure can satisfy small amount of

specific requirements in robotics, an efficient and dynamic space partition data structure

is still in need, especially for applications on small scale mobile robots such as UAVs.

In this chapter, we propose a dynamic k-d tree structure called ikd-Tree, which

builds and incrementally updates a k-d tree with new points only while simultaneously

down-samples them into the desired resolution. It supports incremental operations in-

cluding insertion, re-insertion, and delete of a single point (i.e., point-wise) or a box of

points (i.e., box-wise). The tree is automatically re-balanced by partial re-building. To

preserve efficient real-time tree update, ikd-Tree separates the tree re-building into two

parallel threads when necessary. This paper also provides a complete time complexity

analysis for all tree updates, including both incremental operations and re-balancing.

The time complexity of ikd-Tree is reduced substantially as verified on both random

data and real-world point-cloud in LiDAR-inertial mapping applications. The ikd-Tree
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is open sourced at Github1. Fig. 2.1 illustrates the incremental updates and re-balancing

on the tree from a 3-D view.

Figure 2.1: Illustration of incremental k-d tree update and re-balancing. (a): an
existing k-d tree (black dots) and new points (red triangles) to insert, blue cubes denote
the space (i.e., branches) need to be re-balanced. (b): the k-d tree after points insertion
and tree re-balancing, blue cubes denote the space after re-balancing while rest majority
tree does not change. Video available at https://youtu.be/ueOunk03zxA

This chapter is organized as follows: Section 2.2 introduces related work. The

design of ikd-Tree is described in Section 2.3. Theoretical analysis of time and space

complexity are presented in Section 2.4. Experiments are shown in Section 2.5, followed

by conclusions in Section 2.6.

2.2 Related work

A k-d tree can be viewed as a binary search tree and inherits the same incremental

operations (i.e., insert, re-insert, and delete), such as those in AVL trees [138], treaps

[139] and splay trees [140]. In these techniques, re-balancing of a binary search tree

after many point operations can be easily achieved by tree node rotations. However,

this straightforward tree rotation only works for one-dimensional data. For k-d trees

with higher data dimension, it requires much more complicated tree reorganization.

Strategies specifically designed for fast re-balancing k-d trees fall into two cate-

gories: hardware-based acceleration and specially designed structure enabling dynamic

re-balancing. Hardware-based algorithms exploits the computing hardware to (re-) bal-

ance a kd-tree by building a new one. It has been thoroughly investigated to solve
1Git: https://github.com/hku-mars/ikd-Tree.git

https://youtu.be/ueOunk03zxA
https://github.com/hku-mars/ikd-Tree.git
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the ray tracing problem in dynamic scenes. In 3D graphic applications, algorithms on

single-core CPU [141, 142] and multi-core CPU [143] are firstly proposed to speed up

the k-d tree construction. Zhou et al. proposed a real-time construction algorithm on

GPU [144]. These algorithms rely heavily on the computing resource which is usually

limited on onboard computers.

For the second category, Bentley et al. proposed a general binary transformation

method for converting a static k-d tree to a dynamic one [145]. The dynamic k-d tree

supports only insertion but not delete, which leads to a growing tree size hence increased

time for nearest search. Galperin et al. [146] proposes a scapegoat k-d tree that can

dynamically re-balance the tree by re-building unbalanced sub-trees, which is much more

efficient than a complete re-building of the entire tree. Bkd tree [147] is a dynamic data

structure extended from a K-D-B tree [148] which focus on external memory adaptions.

A set of static k-d trees are built in the Bkd tree where the trees are re-balanced by

re-building partial set of the trees at regular intervals. The well-known point cloud

library (PCL) [137] uses the fast library for approximate nearest neighbors (FLANN)

search [149]. Point insertion and delete are supported in FLANN but the trees are re-

balanced via inefficient complete tree re-building after a predetermined amount of points

insertion or delete [150].

Our ikd-Tree is an efficient and complete data structure enabling incremental opera-

tions (i.e., insert, re-insert, and delete) and dynamic re-balancing of k-d trees. Compared

to the dynamic k-d tree in [145], our implementation supports points delete. Besides the

point-wise operations presented in [138–140] and [146], our ikd-Tree further supports the

incremental operations of a box of points (i.e., box-wise operations) and simultaneous

points down-sampling. The dynamic tree re-balancing strategy of ikd-Tree follows the

concept of scapegoat trees in [146], which only re-builds those unbalanced sub-trees.

The ikd-Tree is particularly suitable for robotic applications, such as real-time LiDAR

mapping and motion planning, where data are sampled sequentially and fast incremental

update is necessary.
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2.3 ikd-Tree Design and Implementation

In this section, we describe how to design, build, and update an incremental k-d

tree in ikd-Tree to allow incremental operations (e.g., insertion, re-insertion, and delete)

and dynamic re-balancing.

2.3.1 Data Structure

The attributes of a tree node in ikd-Tree is presented in Data Structure 1. Line

2-4 are the common attributes for a standard k-d tree. The attributes leftchild and

rightchild are pointers to its left and right child node, respectively. The point informa-

tion (e.g., point coordinate, intensity) are stored in point. Since a point corresponds a

single node on a k-d tree, we will use points and nodes interchangeably. The division axis

is recorded in axis. Line 5-7 are the new attributes designed for incremental updates

detailed in Section 2.3.3.

Data Structure 1: Tree node structure
1 Struct TreeNode:

// Common Attributes in Standard K-D trees
2 PointType point;
3 TreeNode * leftchild, rightchild;
4 int axis;

// New Attributes in ikd-Tree
5 int treesize, invalidnum;
6 bool deleted, treedeleted, pushdown;
7 float range[k][2];
8 end

2.3.2 Building An Incremental K-D Tree

Building an incremental k-d tree is similar to building a static k-d tree except

maintaining extra information for incremental updates. The entire algorithm is shown

in Algorithm 1: given a point array V , the points are firstly sorted by the division

axis with maximal covariance (Line 4-5). Then the median point is saved to point

of a new tree node T (Line 6-7). Points below and above the median are passed to

the left and right child node of T , respectively, for recursive building (Line 9-10). The

LazyLabelInit and Pullup in Line 11-12 update all attributes necessary for incremental

updates (see Data Structure 1, Line 5-7) detailed in Section 2.3.3.
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Algorithm 1: Build a balanced k-d tree
Input: V,N ▷ Point Array and Point Number
Output: RootNode ▷ K-D Tree Node

1 RootNode = Build(V, 0, N − 1);
2 Function Build(V, l, r)
3 mid← ⌊(l + r)/2⌋;
4 Axis← Axis with Maximal Covariance;
5 V ← sort(V, axis);
6 Node T ;
7 T.point← V [mid];
8 T.axis← Axis;
9 T.leftchild← Build(V, l,mid− 1);

10 T.rightchild← Build(V,mid+ 1, r);
11 LazyLabelInit(T );
12 Pullup(T);
13 return T ;
14 End Function

2.3.3 Incremental Updates

The incremental updates refer to incremental operations followed by a dynamic re-

balancing detailed in Section 2.3.4. The incremental operations include insertion, delete

and re-insertion of points to/from the k-d tree. Specifically, the insertion operation

appends a new point (i.e., a node) to the k-d tree. In the delete operation, we use a

lazy delete strategy. That is, the points are not removed from the tree immediately but

only labeled as “deleted” by setting the attribute deleted to true (see Data Structure

1, Line 6). If all nodes on the sub-tree rooted at T have been deleted, the attribute

treedeleted of T is set to true. Therefore the attributes deleted and treedeleted are

called lazy labels. If points labeled as “deleted” but not removed are later inserted to

the tree, it is referred to as “re-insertion” and is efficiently achieved by simply setting the

deleted attribute back to false. Otherwise, points labeled as “deleted” will be removed

from the tree during re-building process (see Section 2.3.4).

Our incremental updates support two types: point-wise updates and box-wise up-

dates. The point-wise updates insert, delete, or re-insert a single point on the tree while

the box-wise updates insert, delete or re-insert all points in a given box aligned with

the data coordinate axis. Box-wise updates may require to delete or re-insert an en-

tire sub-tree rooted at T . In this case, recursively updating the lazy labels deleted and

treedeleted for all offspring nodes of T are still inefficient. To address this issue, we

use a further lazy strategy to update the lazy labels of the offspring nodes. The lazy
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label for lazy labels deleted and treedeleted is pushdown (see Data Structure 1, Line

6). The three labels deleted, treedeleted, and pushdown are all initialized as false in

LazyLabelInit (see Algorithm 1, Line 11).

2.3.3.1 Pushdown and Pullup

Two supporting functions, Pushdown and Pullup, are designed to update attributes

on a tree node T . The Pushdown function copies the labels deleted, treedeleted, and

pushdown of T to its children (but not further offsprings) when the attribute pushdown

is true. The Pullup function summarizes the information of the sub-tree rooted at T to

the following attributes of node T : treesize (see Data Structure 1, Line 5) saving the

number of all nodes on the sub-tree, invalidnum saving the number of nodes labelled

as “deleted” on the sub-tree, and range (see Data Structure 1, Line 7) summarising

the range of all points on the sub-tree along coordinate axis, where k is the points

dimension.

2.3.3.2 Point-wise Updates

The point-wise updates on the incremental k-d tree are implemented in a recursive

way which is similar to the scapegoat k-d tree [146]. For point-wise insertion, the

algorithm searches down from the root node recursively and compares the coordinate

on division axis of the new point with the points stored on the tree nodes until a leaf

node is found to append a new tree node. For delete or re-insertion of a point P , the

algorithm finds the tree node storing the point P and modifies the attribute deleted.

Further details can be found in our Github repository1.

2.3.3.3 Box-wise Updates

The box-wise insertion is implemented by inserting the new points one by one into

the incremental k-d tree. Other box-wise updates (box-wise delete and re-insertion) are

implemented utilizing the range information in attribute range, which forms a box CT ,

and the lazy labels on the tree nodes. The pseudo code is shown in Algorithm 2.

Given the box of points CO to be updated on (sub-) tree rooted at T , the algorithm

first passes down its lazy labels to its children for further passing-down if visited (Line

2). Then, it searches the k-d tree from its root node recursively and checks whether
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Algorithm 2: Box-wise Updates
Input: CO ▷ Operation box

T ▷ K-D Tree Node
SW ▷ Switch of Parallelly Re-building

1 Function BoxwiseUpdate(T,CO, SW)
2 Pushdown(T);
3 CT ← T.range;
4 if CT ∩ CO = ∅ then return;
5 if CT ⫅ CO then
6 UpdateLazyLabel();
7 T.pushdown = true;
8 return;
9 else

10 P ← T.point;
11 if P ⊂ CO then Modify T.deleted;
12 BoxwiseUpdate(T.leftchild, CO, SW);
13 BoxwiseUpdate(T.rightchild, CO, SW);
14 end
15 Pullup(T);
16 if ViolateCriterion(T) then
17 if T.treesize < Nmax or Not SW then
18 Rebuild(T)
19 else
20 ThreadSpawn(ParallelRebuild, T)
21 end
22 end
23 End Function
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the range CT on the (sub-)tree rooted at the current node T has an intersection with

the box CO. If there is no intersection, the recursion returns directly without updating

the tree (Line 4). If the box CT is fully contained in the box CO, the box-wise delete

set attributes deleted and treedeleted to true while the box-wise re-insertion set them

to false by function UpdateLazyLabel (Line 6). The pushdown attribute is set to true

indicating that the latest incremental updates have not been applied to the offspring

nodes of T . For the condition that CT intersects but not contained in CO, the current

point P is firstly deleted from or re-inserted to the tree if it is contained in CO (Line 11),

after which the algorithm looks into the child nodes recursively (Line 12-13) and updates

all attributes of the current node T (Line 15). Line 16-22 re-balance the tree if certain

criterion is violated (Line 16) by re-building the tree in the same (Line 18) or a separate

(Line 20) thread. The function ViolateCriterion, Rebuild and ParrallelRebuild

are detailed in Section 2.3.4.

Algorithm 3: Downsample
Input: L ▷ Length of Downsample Cube

P ▷ New Point
1 CD ← FindCube(L,P)
2 Pcenter ← Center(CD);
3 V ← BoxwiseSearch(RootNode, CD);
4 V.push(P );
5 Pnearest ← FindNearest (V, Pcenter);
6 BoxwiseDelete(RootNode, CD)
7 PointwiseInsert(RootNode, Pnearest);

(a) (b)
Figure 2.2: Point Cloud Downsample. (a): the point cloud before down-sampling. (b):
the point cloud after down-sampling
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2.3.3.4 Downsample

Our ikd-Tree further supports down-sampling as detailed in Algorithm 3. For

the given point P and down-sampling resolution L, the algorithm partitions the space

evenly into cubes of length L, then the box CD that contains point P is found (Line 1).

The algorithm only keeps the point that is nearest to the center Pcenter of CD (Line 2).

This is achieved by firstly searching all points contained in CD on the k-d tree and stores

them in a point array V together with the new point P (Line 3-4). The nearest point

Pnearest is obtained by comparing the distances of each point in V to the center Pcenter

(Line 5). Then existing points in CD are deleted (Line 6), after which the nearest point

Pnearest is inserted to the k-d tree (Line 7). The implementation of box-wise search

is similar to the box-wise delete and re-insertion (see Algorithm 2). An example of

downsample is shown in Fig. 2.2.

Table 2.1: Comparison of Supported Incremental Updates

Static

K-D Tree

Dynamic

K-D Tree

Scapegoat

K-D Tree
ikd-Tree

Point-wise

Insert ✗ ✓ ✓ ✓

Delete ✗ ✗ ✓ ✓

Re-insert ✗ ✗ ✗ ✓

Box-wise

Insert ✗ ✓ ✓ ✓

Delete ✗ ✗ ✗ ✓

Re-insert ✗ ✗ ✗ ✓

Downsample ✗ ✗ ✗ ✓

In summary, Table 2.1 shows the comparison of supported incremental updates on

the static k-d tree [92], the dynamic k-d tree [145], the scapegoat k-d tree [146] and our

ikd-Tree.

2.3.4 Re-balancing

Our ikd-Tree actively monitors the balance property of the incremental k-d tree and

dynamically re-balances it by partial re-building.
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2.3.4.1 Balancing Criterion

The balancing criterion is composed of two sub-criterions: α-balanced criterion and

α-deleted criterion. Suppose a sub-tree of the incremental k-d tree is rooted at T . The

sub-tree is α-balanced if and only if it satisfies the following condition:

S(T.leftchild) < αbal

(
S(T )− 1

)
S(T.rightchild) < αbal

(
S(T )− 1

) (2.1)

where αbal ∈ (0.5, 1) and S(T ) is the treesize attribute of the node T .

The α-deleted criterion of the sub-tree rooted at T is

I(T ) < αdelS(T ) (2.2)

where αdel ∈ (0, 1) and I(T ) denotes the number of invalid nodes on the sub-tree (i.e.,

the attributes invalidnum of node T ).

If a sub-tree of the incremental k-d tree meets both criterion, the sub-tree is bal-

anced. The entire tree is balanced if all sub-trees are balanced. Violation of either

criterion will trigger a re-building process to re-balance that (sub-) tree: the α-balanced

criterion maintains the maximum height of the (sub-) tree. It can be easily proved that

the maximum height of an α-balanced tree is log1/αbal
(n) where n is the tree size; the

α-deleted criterion ensures invalid nodes (i.e., labeled as “deleted”) on the (sub-) trees

are removed to reduce tree size. Reducing height and size of the k-d tree allows highly

efficient incremental operations and queries in future. The function ViolateCriterion

in Algorithm 2, Line 16 returns true if either criterion is violated.

2.3.4.2 Re-build

Assuming re-building is triggered on a subtree T (see Fig. 2.3), the sub-tree is

firstly flattened into a point storage array V . The tree nodes labeled as “deleted” are

discarded during flattening. A new perfectly balanced k-d tree is then built with all

points in V by Algorithm 1.
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Figure 2.3: Re-build an unbalanced sub-tree

2.3.4.3 Parallel Re-build

An evident degradation of real-time ability is observed when re-building a large

sub-tree on the incremental k-d tree. To preserve high real-time ability, we design a

double-thread re-building method: the main thread only re-builds sub-trees whose size

is smaller than a predetermined value Nmax and the second thread re-builds the rest.

The key problem is how to avoid information lose and memory conflicts between the

main thread and the second thread.

The re-building algorithm on the second thread is shown in Algorithm 4. Denote

the sub-tree to re-build in the second thread as T and its root node as T . The second

thread will lock all incremental updates (i.e., points insert, re-insert, and delete) but

not queries on this sub-tree (Line 2). Then the second thread copies all valid points

contained in the sub-tree T into a point array V (i.e. flatten) while leaving the original

sub-tree unchanged for possible queries during the re-building process (Line 3). After

the flattening, the sub-tree is unlocked for the main thread to take further requests of

incremental updates (Line 4). These requests will be recorded in a queue named as

operation logger. Once the second thread completes building a new balanced k-d tree

T ′ from the point array V (Line 5), the recorded update requests will be performed on

the balanced sub-tree T ′ by function IncrementalUpdates (Line 6-8) where the parallel

re-building option is set to false (as it is already in the second thread). After all pending

requests are processed, the algorithm locks the node T from both incremental updates

and queries and replace it with the new one T ′ (Line 9-12). Finally, the algorithm frees

the memory of the original sub-tree (Line 13). Note that LockUpdates does not block

queries, which can be conducted parallelly in the main thread. In contrast, LockAll

blocks all access including queries, but it finishes very quickly (i.e., only one instruction),

allowing timely queries in the main thread. The function LockUpdates and LockAll are
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implemented by mutual exclusion (mutex).

Algorithm 4: Parallelly Rebuild for Re-balancing
Input: T ▷ Root node of T for re-building

1 Function ParallelRebuild(T)
2 LockUpdates(T);
3 V ← Flatten(T);
4 Unlock(T);
5 T ′ ← Build(V,0,size(V)-1);
6 foreach op in OperationLogger do
7 IncrementalUpdates(T ′, op, false)
8 end
9 Ttemp ← T ;

10 LockAll(T);
11 T ← T ′;
12 Unlock(T);
13 Free(Ttemp);
14 End Function

2.3.5 K-Nearest Neighbor Search

The nearest search on the incremental k-d tree is an accurate nearest search [127]

instead of an approximate one as [149]. The function Pushdown is applied before search-

ing the sub-tree rooted at node T to pass down its lazy labels. We use the attribute

range to speed up the search process thus hard real-time ability is preserved. Due to

the space limit, the details of k-nearest search algorithm is not presented in this paper.

Interested readers can refer to the related codes in our open source library.

2.4 Complexity Analysis

2.4.1 Time Complexity

The time complexity of ikd-Tree breaks into the time for incremental operations

(insertion, re-insertion and delete) and re-building.

2.4.1.1 Incremental Operations

The time complexity of point-wise operations is given as

Lemma 1 (Point-wise Operations). An incremental k-d tree can handle a point-wise

incremental operation with time complexity of O(log n) where n is the tree size.
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Proof. The maximum height of an incremental k-d tree can be easily proved to be

log1/αbal
(n) from Eq. (2.1) while that of a static k-d tree is log2 n. Hence the lemma is

directly obtained from [92] where the time complexity of point insertion and delete on

a k-d tree was proved to be O(log n). The point-wise re-insertion modifies the attribute

deleted on a tree node thus the time complexity is the same as point-wise delete.

The time complexity of box-wise operations on an incremental k-d tree is:

Lemma 2 (Box-wise Operations). An incremental 3-d tree handles box-wise insertion

of m points in CD with time complexity of O(m log n). Furthermore, suppose points on

the 3-d tree are in space Sx×Sy ×Sz and CD = Lx×Ly ×Lz. The box-wise delete and

re-insertion can be handled with time complexity of O(H(n)), where

O(H(n)) =



O(log n) if∆min ⩾ α( 23 )(*)

O(n1−a−b−c) if∆max ⩽ 1− α( 13 )(**)

O(nα(
1
3 )−∆min−∆med) if (*) and (**) fail and

∆med < α( 13 )− α(
2
3 )

O(nα(
2
3 )−∆min) otherwise.

(2.3)

where a = logn
Sx

Lx
, b = logn

Sy

Ly
and c = logn

Sz

Lz
with a, b, c ⩾ 0. ∆min, ∆med and ∆max

are the minimal, median and maximal value among a, b and c. α(u) is the flajolet-

puech function with u ∈ [0, 1], where particular value is provided: α( 13 ) = 0.7162 and

α( 23 ) = 0.3949

Proof. The box-wise insertion is implemented by point-wise insertion thus the time

complexity can be directly obtained from Lemma 1. An asymptotic time complexity for

range search on a k-d tree is provided in [151]. The box-wise delete and re-insertion can

be regarded as a range search except that lazy labels are attached to the tree nodes.

Therefore, the conclusion of range search can be applied to the box-wise delete and

re-insertion on the incremental k-d tree.

The down-sampling method on an incremental k-d tree is composed of box-wise

search and delete followed by the point insertion. By applying Lemma 1 and Lemma 2,

the time complexity of downsample is O(log n)+O(H(n)). Generally, the downsample
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hypercube CD is very small comparing with the entire space. Therefore, the normalized

range ∆x, ∆y and ∆z are small and the value of ∆min satisfies the condition (*) for

time complexity of O(log n). Hence, the time complexity of down-sampling is O(log n).

2.4.1.2 Re-build

Time complexity for re-building breaks into two types: single-thread re-building

and parallel two-thread re-building. In the former case, the re-building is performed by

the main thread in a recursive way. Each level takes the time of sorting (i.e., O(n))

and the total time over log n levels is O(n log n) [92] when the the dimension k is low

(e.g., 3 in most robotic applications). For parallel re-building, the time consumed in the

main thread is only flattening (which suspends the main thread from further incremental

updates, Algorithm 4, Line 2-4) but not building (which is performed in parallel by

the second thread, Algorithm 4, Line 5) or tree update (which takes constant time

O(1), Algorithm 4, Line 9-12), leading to a time complexity of O(n). In summary, the

time complexity of re-building an incremental k-d tree is O(n) for two-thread parallel

re-building and O(n log n) for single-thread re-building.

2.4.1.3 Nearest Search

For robotic applications, the points dimension is usually very small. Hence the time

complexity of k-nearest search on the incremental k-d tree can be simply approximated

as O(log n) because the maximum height of the incremental k-d tree is maintained no

larger than log 1
α
n.

2.4.2 Space Complexity

As shown Section 2.3, each node on the incremental k-d tree records point informa-

tion, tree size, invalid point number and point distribution of the tree. Extra flags such

as lazy labels are maintained on each node for box-wise operations. For an incremental

k-d tree with n nodes, the space complexity is O(n) though the space constant is a few

times larger than a static k-d tree.
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Table 2.2: The Parameters Setup of ikd-Tree in Experiments

Randomized Data LiDAR Inertial-Odometry and Mapping

Nmax 1500 1500
αbal 0.6 0.6
αdel 0.5 0.5
CD - 0.2m×0.2m×0.2m

2.5 Application Experiments

2.5.1 Randomized Data Experiments

The efficiency of our ikd-Tree is fully investigated by two experiments on random-

ized incremental data sets. The first experiment generates 5,000 points randomly in a

10m×10m×10m space (i.e., the workspace) to initialize the incremental k-d tree. Then

1,000 test operations are conducted on the k-d tree. In each test operation, 200 new

points randomly sampled in the workspace are inserted (point-wise) to the k-d tree.

Then another 200 points are randomly sampled in the workspace and searched on (but

not inserted to) the k-d tree for 5 nearest points of each. For every 50 test operations,

4 cubes are sampled in the workspace with side length of 1.5m and points contained in

these 4 cubes are deleted (box-wise) from the k-d tree. For every 100 test operations,

2,000 new points are sampled in the workspace and inserted (point-wise) to the k-d tree.

We compare the ikd-Tree with the static k-d tree used in point cloud library [137] where

at each test operation the k-d tree is entirely re-built. The experiments are performed on

a PC with Intel i7-10700 CPU at 2.90GHz and only 2 threads running. The parameters

of the incremental k-d tree are summarized in Table 2.2 where no down-sampling is used

to allow a fair comparison. Also the maximal point number allowed to store on the leaf

node of a static k-d tree is set to 1 while the original setting in point cloud library is 15.

The results of the first experiment are shown in Fig. 2.4, where the point number

increases from 5,000 to approximate 200,000. In this process, the time for incremental

updates (including both incremental operations and re-building) on the ikd-Tree remains

stably around 1.6ms while that for the static k-d tree grows linearly with number of

the points (see Fig. 2.4(a)). The high peaks in the time consumption are resulted from

the large-scale point-wise insertion (and associated re-balancing) and the low peaks are

resulted from box-wise delete (and associated re-balancing). As shown in Fig. 2.4(b),
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Figure 2.4: The time performance comparison between an ikd-Tree and a static k-d
tree.
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the time performance of the k-nearest search on the ikd-Tree is slightly slower than an

static k-d tree, possibly due to the highly optimized implementation of the PCL library.

Despite of the slightly lower efficiency in query, the overall time consumption of ikd-Tree

outperforms the static k-d tree by one order of magnitude (See Fig. 2.4(c)).
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Figure 2.5: Fig. (a) and (b) illustrate new points (orange triangles) and points already
on the k-d tree (blue dots). Fig. (c) shows the time for incremental updates of sparse
and compact data on k-d trees of different size.

The second experiment investigates the time performance of incremental updates

for new points of different distribution. In the experiment, we sample two sets of 4,000

new points in a 10m×10m×10m space (i.e., the workspace): one is evenly distributed

(i.e., sparse data, see Fig. 2.5 (a)) and the other concentrated in a 2.5m×2.5m×2.5m

space (i.e., compact data, see Fig. 2.5 (b)). The sparse and compact data are inserted

to an existing incremental k-d tree of different size but all sampled in the workspace.

Fig. 2.5(c) shows the running time of sparse and compact point-wise insertion on k-d

trees of different size. As expected, the incremental updates for compact data are slower

than the sparse one because re-building are more likely to be triggered when inserting a

large amount of points into a small sub-tree of a k-d tree.

2.5.2 LiDAR Inertial-Odometry and Mapping

We test our developed ikd-Tree in an actual robotic application: lidar-inertial odom-

etry (and mapping) presented in [33, 43, 50, 128–130]. In this application, k-d tree-based

nearest point search is crucial to match a point in a new LiDAR scan to its correspon-

dences in the map (or the previous scan). Since the map is dynamically growing by
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matching and merging new scans, the k-d tree has to be re-built every time a new scan

is merged. Existing methods [33, 43, 50, 128–130] commonly used static kd-tree from

PCL and rebuilds the entire tree based on all points in the map (or a submap). This

leads to a significant computation costs severely limiting the map update rate (e.g., from

1Hz [33, 43, 50] to 10Hz [130]).

In this experiment, we replace the static k-d tree (build, update, and query) by

our ikd-Tree, which enables incremental update of the map by updating the new points

only. We test ikd-Tree on the lidar-inertial mapping package FAST-LIO in [130]2. The

experiment is conducted on a real-world outdoor scene using a Livox Avia LiDAR3 [152]

with 70° FoV and a high frame rate of 100Hz. All the algorithms are running on the

DJI Manifold 2-C4 with a 1.8GHz quad-core Intel i7-8550U CPU and 8GB RAM.
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Figure 2.6: Fig. (a) shows the average running time of fusing one new lidar scan in
FAST-LIO using the ikd-Tree and a static k-d tree. Fig. (b) shows time for nearest
search, incremental updates, and total time in fusing one lidar scan. Fig. (c) shows the
balance property after re-building on main thread.

2https://github.com/hku-mars/FAST_LIO
3https://www.livoxtech.com/de/avia
4https://www.dji.com/manifold-2/specs

https://github.com/hku-mars/FAST_LIO
https://www.livoxtech.com/de/avia
https://www.dji.com/manifold-2/specs
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Figure 2.7: Mapping Result of the Main Building, University of Hong Kong. The
green line is the path of the lidar computed by FAST-LIO.

The time of fusing a new lidar scan in FAST-LIO is shown in Fig. 2.6(a). The

time is the averaged time of the most recent 100 scans. It is seen that the ikd-Tree

achieves a nearly constant time performance around 1.6ms, which fundamentally enables

a mapping rate up to 100Hz (against 10Hz presented in the original work [130] using

static k-d tree). On the other hand, the time with the static k-d tree is overall increasing

linearly, and decreases occasionally due to the small overlap between the lidar current

FoV and the map. The resultant processing time with the static k-d tree exceeds 10 ms

from 366s on, which is more than the collection time of one lidar scan.

The time for fusing a new lidar scan consists of many operations, such as point

registration, state estimation, and kd-tree related operations (including queries and up-

date). The time breakdown of k-d tree-related operations is shown in Fig. 2.6(b). The

average time of incremental updates for ikd-Tree is 0.23ms which is only 4% of that

using an static k-d tree ( 5.71ms). The average time of nearest search using the ikd-Tree

and an static k-d tree are at the same level.

Furthermore, Fig. 2.6(c) investigates the balancing property of the incremental

kd-tree by examining the two criterions αbal and αdel, which are defined as:

αbal(T ) =
max

{
S(T.leftchild), S(T.rightchild)

}
S(T )− 1

αdel(T ) =
I(T )

S(T )

(2.4)

As expected, the two criterion are maintained below the prescribed thresholds (see Table
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2.2) due to re-building, indicating that the kd-tree is well-balanced through the incre-

mental updates. The peaks over the thresholds is resulted from parallely re-building,

which drop quickly when the re-building is done. Finally, Fig. 2.7 shows the 100Hz

mapping results.

2.6 Conclusion

This paper proposed an efficient data structure, ikd-Tree, to incrementally update

a k-d tree in robotic applications. The ikd-Tree supports incremental operations in

robotics while maintaining balanced by partial re-building. We provided a complete

analysis of time and space complexity to prove the high efficiency of the proposed dy-

namic structure. The ikd-Tree was tested on randomized experiments and an outdoor

LiDAR inertial-odometry and mapping experiment. In all tests, the proposed data

structure achieved two orders of magnitude higher efficiency.
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Chapter 3

FAST-LIO2: Fast Direct

LiDAR-inertial Odometry

Building on the highly efficient data structure ikd-Tree in the preceding chapter,

this chapter presents FAST-LIO2, a novel LiDAR-inertial Odometry framework allows

fast, robust, and accurate LiDAR navigation (and mapping). FAST-LIO2 has two key

novelties compared to existing works. The first one is directly registering raw points

to the map (and subsequently update the map, i.e., mapping) without extracting fea-

tures. This enables the exploitation of subtle features in the environment and hence

increases the accuracy. The elimination of a hand-engineered feature extraction module

also makes it naturally adaptable to emerging LiDARs of different scanning patterns;

The second main novelty is maintaining a map by ikd-Tree that enables incremental

updates (i.e., point insertion, delete) and dynamic re-balancing. Compared with ex-

isting dynamic data structures (octree, R∗-tree, nanoflann k-d tree), ikd-Tree achieves

superior overall performance while naturally supports downsampling on the tree. We

conduct an exhaustive benchmark comparison in 19 sequences from a variety of open

LiDAR datasets. FAST-LIO2 achieves consistently higher accuracy at a much lower

computation load than other state-of-the-art LiDAR-inertial navigation systems. Var-

ious real-world experiments on solid-state LiDARs with small FoV are also conducted.

Overall, FAST-LIO2 is computationally efficient (e.g., up to 100Hz odometry and map-

ping in large outdoor environments), robust (e.g., reliable pose estimation in cluttered

indoor environments with rotation up to 1000 °/s), versatile (i.e., applicable to both

multi-line spinning and solid-state LiDARs, UAV and handheld platforms, and Intel
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and ARM-based processors), while still achieving higher accuracy than existing meth-

ods. Our implementation of the system FAST-LIO2, and the data structure ikd-Tree is

open-sourced on Github: https://github.com/hku-mars/FAST_LIO.

3.1 Introduction

Building a dense 3-dimension (3D) map of an unknown environment in real-time

and simultaneously localizing in the map (i.e., SLAM) is crucial for autonomous robots

to navigate in the unknown environment safely. The localization provides state feedback

for the robot onboard controllers, while the dense 3D map provides necessary information

about the environment (i.e., free space and obstacles) for trajectory planning. Vision-

based SLAM [11, 153–155] is very accurate in localization but maintains only a sparse

feature map and suffers from illumination variation and severe motion blur. On the other

hand, real-time dense mapping [156–159] based on visual sensors at high resolution and

accuracy with only the robot onboard computation resources is still a grand challenge.

Due to the ability to provide direct, dense, active, and accurate depth measurements

of environments, 3D light detection and ranging (LiDAR) sensor has emerged as another

essential sensor for robots [19, 20]. Over the last decade, LiDARs have been playing an

increasingly important role in many autonomous robots, such as self-driving cars [160]

and autonomous UAVs [135, 161]. Recent developments in LiDAR technologies have

enabled the commercialization and mass production of more lightweight, cost-effective

(in a cost range similar to global shutter cameras), and high performance (centimeter

accuracy at hundreds of meters measuring range) solid-state LiDARs [21, 162], drawing

much recent research interests [46, 50, 163–165]. The considerably reduced cost, size,

weight, and power of these LiDARs hold the potential to benefit a broad scope of existing

and emerging robotic applications.

The central requirement for adopting LiDAR-based SLAM approaches to these

widespread applications is to obtain accurate, low-latency state estimation and dense

3D map with limited onboard computation resources. However, efficient and accurate

LiDAR odometry and mapping are still challenging problems: 1) Current LiDAR sensors

produce a large amount of 3D points from hundreds of thousands to millions per second.

Processing such a large amount of data in real-time and on limited onboard computing

https://github.com/hku-mars/FAST_LIO
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resources requires a high computation efficiency of the LiDAR odometry methods; 2) To

reduce the computation load, features points, such as edge points or plane points, are

usually extracted based on local smoothness. However, the performance of the feature

extraction module is easily influenced by the environment. For example, in structure-less

environments without large planes or long edges, the feature extraction will lead to few

feature points. This situation is considerably worsened if the LiDAR Field of View (FoV)

is small, a typical phenomenon of emerging solid-state LiDARs [50]. Furthermore, the

feature extraction also varies from LiDAR to LiDAR, depending on the scanning pattern

(e.g., spinning, prism-based [21], MEMS-based [162]) and point density. So the adoption

of a LiDAR odometry method usually requires much hand-engineering work; 3) LiDAR

points are usually sampled sequentially while the sensor undergoes continuous motion.

This procedure creates significant motion distortion influencing the performance of the

odometry and mapping, especially when the motion is severe. Inertial measurement

units (IMUs) could mitigate this problem but introduces additional states (e.g., bias,

extrinsic) to estimate; 4) LiDAR usually has a long measuring range (e.g., hundreds of

meters) but with quite low resolution between scanning lines in a scan. The resultant

point cloud measurements are sparsely distributed in a large 3D space, necessitating

a large and dense map to register these sparse points. Moreover, the map needs to

support efficient inquiry for correspondence search while being updated in real-time

incorporating new measurements. Maintaining such a map is a very challenging task

and very different from visual measurements, where an image measurement is of high

resolution, so requiring only a sparse feature map because a feature point in the map

can always find correspondence as long as it falls in the FoV.

In this work, we address these issues by two key novel techniques: incremental k-d

tree and direct points registration. More specifically, our contributions are as follows: 1)

We leverage an incremental k-d tree data structure, ikd-Tree, to represent a large dense

point cloud map efficiently. Besides efficient nearest neighbor search, ikd-Tree supports

incremental map update (i.e., point insertion, on-tree downsampling, points delete) and

dynamic re-balancing at minimal computation cost. These features make the ikd-Tree

very suitable for LiDAR odometry and mapping application, leading to 100Hz odometry

and mapping on computationally-constrained platforms such as an Intel i7-based micro-

UAV onboard computer and even ARM-based processors. 2) Allowed by the increased
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computation efficiency of ikd-Tree, we directly register raw points to the map, which

enables more accurate and reliable scan registration even with aggressive motion and

in very cluttered environments. We term this raw points-based registration as direct

method in analogy to visual SLAM [166]. The elimination of a hand-engineered feature

extraction makes the system naturally applicable to different LiDAR sensors; 3) We

integrate these two key techniques into a full tightly-coupled lidar-inertial odometry

system FAST-LIO [130] we recently developed. The system uses an IMU to compensate

each point’s motion via a rigorous back-propagation step and estimates the system’s

full state via an on-manifold iterated Kalman filter. The new system is termed as

FAST-LIO2 and is open-sourced at GitHub to benefit the community; 4) We conduct

various experiments to evaluate the effectiveness of the developed ikd-Tree, the direct

point registration, and the overall system. Experiments on 18 sequences of various

sizes show that ikd-Tree achieves superior performance against existing dynamic data

structures (octree, R∗-tree, nanoflann k-d tree) in the application of LiDAR odometry

and mapping. Exhaustive benchmark comparison on 19 sequences from various open

LiDAR datasets shows that FAST-LIO2 achieves consistently higher accuracy at a much

lower computation load than other state-of-the-art LiDAR-inertial navigation systems.

We finally show the effectiveness of FAST-LIO2 on challenging real-world data collected

by emerging solid-state LiDARs with very small FoV, including aggressive motion (e.g.,

rotation speed up to 1000 °/s) and structure-less environments.

The remaining paper is organized as follows: In Section 3.2, we discuss relevant

research works. We give an overview of the complete system pipeline and the details of

each key components in Section 3.3, 3.4 and 3.5, respectively. The benchmark compar-

ison on open datasets are presented in Section 3.6 and the real-world experiments are

reported in Section 3.7, followed by conclusions in Section 3.9.

3.2 Related Works

3.2.1 LiDAR(-Inertial) Odometry

Existing works on 3D LiDAR SLAM typically inherit the LOAM structure proposed

in [33]. It consists of three main modules: feature extraction, odometry, and mapping. In

order to reduce the computation load, a new LiDAR scan first goes through feature points
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(i.e., edge and plane) extraction based on the local smoothness. Then the odometry

module (scan-to-scan) matches feature points from two consecutive scans to obtain a

rough yet real-time (e.g., 10Hz) LiDAR pose odometry. With the odometry, multiple

scans are combined into a sweep which is then registered and merged to a global map

(i.e., mapping). In this process, the map points are used to build a k-d tree which

enables a very efficient k-nearest neighbor search (kNN search). Then, the point cloud

registration is achieved by the Iterative Closest Point (ICP) [129, 167, 168] method. In

order to lower the time for k-d tree building, the map points are downsampled at a

prescribed resolution. The optimized mapping process is typically performed at a much

low rate (1Hz-2Hz).

Subsequent LiDAR odometry works keep a framework similar to LOAM. For exam-

ple, Lego-LOAM [43] introduces a ground point segmentation to lower the computation

load and a loop closure module to reduce the long-term drift. Furthermore, LOAM-

Livox [50] adopts the LOAM to an emerging solid-state LiDAR. In order to deal with

the small FoV and non-repetitive scanning, where the features points from two consecu-

tive scans have very few correspondences, the odometry of LOAM-Livox is obtained by

directly registering a new scan to the global map. Such a direct scan to map registration

improves odometry accuracy at the cost of increased computation load for building a

k-d tree of the updated map points at every step.

Incorporating an IMU can considerably increase the accuracy and robustness of

LiDAR odometry by compensating for the motion distortion in a LiDAR scan and pro-

viding a good initial pose required by ICP. More tightly-coupled LiDAR-inertial fusion

works [38, 40, 163, 169] perform odometry in a small size local map consisting of a

fixed number of recent LiDAR scans (or keyframes). Compared to scan-to-scan reg-

istration, the scan to local map registration is usually more accurate by using more

recent information. More specifically, LIOM [40] presents a tightly-coupled LiDAR in-

ertial fusion method where the IMU preintegrations are introduced into the odometry.

LILI-OM [163] develops a new feature extraction method for non-repetitive scanning

LiDARs and performs scan registration in a small map consisting of 20 recent LiDAR

scans for the odometry. The odometry of LIO-SAM [169] requires a 9-axis IMU to pro-

duce attitude measurement as the prior of scan registration within a small local map.

LINS [38] introduces a tightly-coupled iterated Kalman filter and robocentric formula
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into the LiDAR pose optimization in the odometry. Since the local map in the above

works is usually small to obtain real-time performance, the odometry drifts quickly, ne-

cessitating a low-rate mapping process, such as map refining (LINS [38]), sliding window

joint optimization (LILI-OM [163] and LIOM [40]) and factor graph smoothing [170]

(LIO-SAM [169]). Compared to the above methods, FAST-LIO [130] introduces a for-

mal back-propagation that precisely considers the sampling time of LiDAR points and

compensates the motion distortion via a rigorous kinematic model driven by IMU mea-

surements. Furthermore, a new Kalman gain formula is used to reduce the computation

complexity from the dimension of the measurements to the dimension of the state. The

considerably increased computation efficiency allows a direct and real-time scan to map

registration in odometry and update the map (i.e., mapping) at every step. However,

to prevent the growing time of building a k-d tree of the updated map, the system can

only work in small environments (e.g., hundreds of meters).

FAST-LIO2 builds on FAST-LIO [130] hence inheriting the tightly-coupled fusion

framework, especially the back-propagation resolving motion distortion and fast Kalman

gain computation boosting the efficiency. To systematically address the growing com-

putation issue, we leverage a new data structure ikd-Tree which supports incremental

map update at every step and efficient kNN inquiries. Benefiting from the drastically

decreased computation load, the odometry is performed by directly registering raw Li-

DAR points to the map, such that it improves accuracy and robustness of odometry

and mapping, especially when a new scan contains no prominent features (e.g., due to

small FoV and/or structure-less environments). Compared to the above tightly-coupled

LiDAR-inertial methods, which all use feature points, our method is more lightweight

and achieves increased mapping rate and odometry accuracy, and eliminates the need

for parameter tuning for feature extraction.

The idea of directly registering raw points in our work has been explored in LION

[171], which is however a loosely-coupled method as reviewed above. This idea is also

very similar to the generalized-ICP (G-ICP) proposed in [129], where a point is registered

to a small local plane in the map. This ultimately assumes that the environment is

smooth and hence can be viewed as a plane locally. However, the computation load

of generalized-ICP is usually large [172]. Other works based on Normal Distribution

Transformation (NDT) [79, 81, 84] also register raw points, but NDT has lower stability
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compared to ICP and may diverge in some scenes [84].

3.2.2 Dynamic Data Structure in Mapping

In order to achieve real-time mapping, a dynamic data structure is required to

support both incremental updates and kNN search with high efficiency. Generally, the

kNN search problem can be solved by building spatial indices for data points, which

can be divided into two categories: partitioning the data and splitting the space. A

well-known instance to partition the data is R-tree [125] which clusters the data into

potential overlapped axis-aligned cuboids based on data proximity in space. Various R-

trees splits the nodes by linear, quadratic, and exponential complexities, all supporting

nearest neighbor search and point-wise updating (insertion, delete, and re-insertion).

Furthermore, R-trees also support searching target data points in a given search area or

satisfying a given condition. Another version of R-trees is R∗-tree which outperforms

the original ones [173]. The R∗-tree handles insertion by minimum overlap criteria and

applies a forced re-insertion principle for the node splitting algorithm.

Octree [174] and k-dimensional tree (k-d tree) [92] are two well-known types of data

structures to split the space for kNN search. The octree organizes 3-D point clouds by

splitting the space equally into eight axis-aligned cubes recursively. The subdivision of

a cube stops when the cube is empty, or a stopping rule (e.g., minimal resolution or

minimal point number) is met. New points are inserted to leaf nodes on the octree while

a further subdivision is applied if necessary. The octree supports both kNN search and

box-wise search, which returns data points in a given axis-aligned cuboid.

The k-d tree is a binary tree whose nodes represent an axis-aligned hyperplane to

split the space into two parts. In the standard construction rule, the splitting node

is chosen as the median point along the longest dimension to achieve a compact space

division [175]. When considering the data characteristics of low dimensionality and

storage on main memory in mapping, comparative studies show that k-d trees achieve

the best performance in kNN problem [94, 176]. However, inserting new points to and

deleting old points from a k-d tree deteriorates the tree’s balance property; thus, re-

building is required to re-balance the tree. Mapping methods using k-d tree libraries,

such as ANN [177], libnabo [176] and FLANN [149], fully re-build the k-d trees to update
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the map, which results in considerable computation. Though hardware-based methods

to re-build k-d trees have been thoroughly investigated in 3D graphic applications [141–

144], the proposed methods rely heavily on the computational sources which are usually

limited on onboard computers for robotic applications. Instead of re-building the tree

in full scale, Galperin et al. proposed a scapegoat k-d tree where re-building is applied

partially on the unbalanced sub-trees to maintain a loose balance property of the entire

tree [146]. Another approach to enable incremental operations is maintaining a set

of k-d trees in a logarithmic method similar to [145, 178] and re-building a carefully

chosen sub-set. The Bkd-tree maintains a k-d tree T0 with maximal size M in the main

memory and a set of k-d trees Ti on the external memory where the i-th tree has a size

of 2(i−1)M [147]. When the tree T0 is full, the points are extracted from T0 to Tk−1 and

inserted into the first empty tree Tk. The state-of-the-art implementation nanoflann

k-d tree leverages the logarithmic structure for incremental updates, whereas lazy labels

only mark the deleted points without removing them from the trees (hence memory)

[179].

We leverage the new data structure, ikd-Tree, to achieve real-time mapping. The

ikd-Tree supports point-wise insertion with on-tree downsampling which is a common

requirement in mapping, whereas downsampling must be done outside before inserting

new points into other dynamic data structures [173, 174, 179]. When it is required

to remove unnecessary points in a given area with regular shapes (e.g., cuboids), the

existing implementations of R-trees and octrees search the points within the given space

and delete them one by one while common k-d trees use a radius search to obtain

point indices. Compared to such an indirect and inefficient method, the ikd-Tree deletes

the points in given axis-aligned cuboids directly by maintaining range information and

lazy labels. Points labeled as “deleted” are removed during the re-building process.

Furthermore, though incremental updates are available after applying the partial re-

balancing methods as the scapegoat k-d tree [146] and nanoflann k-d tree [179], the

mapping methods using k-d trees suffers from intermittent delay when re-building on

a large number of points. In order to overcome this, the significant delay in ikd-Tree

is avoided by parallel re-building while the real-time ability and accuracy in the main

thread are guaranteed.
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3.3 System Overview
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Figure 3.1: System overview of FAST-LIO2. The overall system consists of a state
estimation module, which estimates the full LiDAR state by registering raw points in
a scan to the map points via a tightly-coupled iterated Kalman filter, and a mapping
module, which incrementally adds the new points in each scan to a k-d tree structure
(i.e., ikd-Tree) and re-balances the tree when necessary.

The pipeline of FAST-LIO2 is shown in Fig. 3.1. The sequentially sampled LiDAR

raw points are first accumulated over a period between 10m sec (for 100Hz update) and

100m sec (for 10Hz update). The accumulated point cloud is called a scan. In order

to perform state estimation, points in a new scan are registered to map points (i.e.,

odometry) maintained in a large local map via a tightly-coupled iterated Kalman filter

framework (big dashed block in red, see Section 3.4). Global map points in the large

local map are organized by an incremental k-d tree structure ikd-Tree (big dashed block

in blue, see Section 3.5). If the FoV range of current LiDAR crosses the map border, the

historical points in the furthest map area to the LiDAR pose will be deleted from ikd-

Tree. As a result, the ikd-Tree tracks all map points in a large cube area with a certain

length (referred to as “map size” in this paper) and is used to compute the residual in

the state estimation module. The optimized pose finally registers points in the new scan

to the global frame and merges them into the map by inserting to the ikd-Tree at the

rate of odometry (i.e., mapping).

3.4 State Estimation

The state estimation of FAST-LIO2 is a tightly-coupled iterated Kalman filter inher-

ited from FAST-LIO [130] but further incorporates the online calibration of LiDAR-IMU

extrinsic parameters. Here we briefly explain the essential formulations and workflow

of the filter and refer readers to [130] for more details. To ease the explanation, we

use the notations summarized in Table I. Moreover, we encapsulate two operations, ⊞
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(“boxplus”) and its inverse ⊟ (“boxminus”) from [130, 180], to parameterize the state

error on a manifoldM with dimension n:

⊞ :M× Rn →M; ⊟ :M×M→ Rn

SO(3) : R⊞ r = RExp(r); R1 ⊟R2 = Log(RT
2 R1)

Rn : a⊞ b = a+ b; a⊟ b = a− b

(3.1)

where Exp (r) = I+ r
∥r∥ sin (∥r∥)+

r2

∥r∥2 (1− cos (∥r∥)) is the exponential map on SO(3)

and Log(·) is its inverse map. For a compound manifold M = SO(3) × Rn that is the

Cartesian product between its sub-manifold components, we have:

R
a

⊞

r
b

 =

R⊞ r

a+ b

 ;

R1

a

⊟

R2

b

 =

R1 ⊟R2

a− b

 (3.2)

Table 3.1: Notations

Symbols Meaning

L The LiDAR body frame at the LiDAR scan-end time.
xi The state x at the i-th IMU sample time;
xk The state x at the k-th LiDAR scan-end time.
x, x̂, x̄ The ground-true, propagated, and updated value of state x.
x̃ The error between ground-true state x and its estimation x̂.
x̂κ The estimate of the state x in the κ-th iteration of the iterated Kalman

filter.

3.4.1 Kinematic Model

We first derive the system model, which consists of a state transition model and a

measurement model.

3.4.1.1 State Transition Model

Take the first IMU frame (denoted as I) as the global frame (denoted as G) and de-

note ITL =
(
IRL,

IpL

)
the unknown extrinsic between LiDAR and IMU, the kinematic
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model is:
GṘI = GRI⌊ωm − bω − nω⌋∧, GṗI = GvI ,

Gv̇I = GRI (am − ba − na) +
Gg

ḃω = nbω, ḃa = nba,

Gġ = 0, IṘL = 0, I ṗL = 0

(3.3)

where GpI , GRI denote the IMU position and attitude in the global frame, GvI is the

IMU velocity in the global frame, Gg is the gravity vector in the global frame, am and

ωm are IMU measurements, na and nω denote the measurement noise of am and ωm,

ba and bω are the IMU biases modeled as random walk process driven by nba and

nbω, and the notation ⌊a⌋∧ denotes the skew-symmetric cross product matrix of vector

a ∈ R3.

Denote i the index of IMU measurements, the continuous kinematic model (3.3)

can be discretized at the IMU sampling period ∆t [181]:

xi+1 = xi ⊞ (∆tf(xi,ui,wi)) (3.4)

where the function f , state x, input u and noise w are defined as below:

x ≜

[
GRT

I
GpT

I
GvT

I bT
ω bT

a
GgT IRT

L
IpT

L

]T
∈M

u ≜

[
ωT

m aTm

]T
, w ≜

[
nT
ω nT

a nT
bω nT

ba

]T

f (x,u,w) =



ωm − bω − nω

GvI +
1

2

(
GRI (am − ba − na) +

Gg
)
∆t

GRI (am − ba − na) +
Gg

nbω

nba

03×1

03×1

03×1



,

(3.5)

and the operation ⊞ is defined on the state manifoldM below (see (3.2))

M ≜ SO(3)× R15 × SO(3)× R3; dim(M) = 24 (3.6)
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which is the Cartesian products of each components. Notice that when compared to

FAST-LIO, we further included the extrinsic parameters ITL =
(
IRL,

IpL

)
into the

state x in (3.4), enabling the extrinsic to be estimated online along with other states

detailed below.

3.4.1.2 Measurement Model

LiDAR typically samples points one after another. The resultant points are there-

fore sampled at different poses when the LiDAR undergoes continuous motion. To

correct this in-scan motion, we employ the back-propagation proposed in [130], which

estimates the LiDAR pose of each point in the scan with respect to the pose at the scan

end time based on IMU measurements. The estimated relative pose enables us to project

all points to the scan end-time based on the exact sampling time of each individual point

in the scan. As a result, points in the scan can be viewed as all sampled simultaneously

at the scan end-time.

Denote k the index of LiDAR scans and {Lpj , j = 1, · · · ,m} the points in the k-th

scan which are sampled at the local LiDAR coordinate frame L at the scan end-time. Due

to the LiDAR measurement noise, each measured point Lpj is typically contaminated

by a noise Lnj consisting of the ranging and beam-directing noise. Removing this noise

leads to the true point location in the local LiDAR coordinate frame Lpgt
j :

Lpgt
j = Lpj +

Lnj . (3.7)

Corresponding Plane

: Points in map
: Points in scan

Figure 3.2: The measurement model: a LiDAR point is assumed to lie on a small plane
formed by its nearby map points. The Guj is the normal vector of the plane and Gqj is
a point lying on the plane.
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This true point, after projecting to the global frame using the corresponding LiDAR

pose GTIk =
(
GRIk ,

GpIk

)
and extrinsic ITL, should lie exactly on a local small plane

patch in the map, i.e., the measurement model is:

0 = GuT
j

(
GTIk

ITL

(
Lpj +

Lnj

)
− Gqj

)
(3.8)

where Guj is the normal vector of the corresponding plane and Gqj is a point lying on

the plane (see Fig. 3.2). It should be noted that the GTIk and ITL are all contained in

the state vector xk. The measurement contributed by the j-th point measurement Lpj

can therefore be summarized from (3.8) to a more compact form as below:

0 = hj

(
xk,

Lnj

)
≜ GuT

j

(
GTIk

ITL(
Lpj +

Lnj)− Gqj

)
, (3.9)

which defines an implicit measurement model for the state vector xk.

3.4.2 Iterated Kalman Filter

Based on the state model (3.4) and measurement model (3.9) formulated on man-

ifold M, we employ an iterated Kalman filter directly operating on the manifold M

following the procedures in [130] and [181]. It consists of two key steps: propagation

upon each IMU measurement and iterated update upon each LiDAR scan, both step

estimates the state naturally on the manifold M thus avoiding any re-normalization.

Since the IMU measurements are typically at a higher frequency than a LiDAR scan

(e.g., 200Hz for IMU measurement and 10Hz∼100Hz for LiDAR scans), multiple prop-

agation steps are usually performed before an update.

3.4.2.1 Propagation

Assume the optimal state estimate after fusing the last (i.e., k− 1-th) LiDAR scan

is x̄k−1 with covariance matrix P̄k−1. The forward propagation is performed upon

the arrival of an IMU measurement. More specifically, the state and covariance are
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propagated following (3.4) by setting the process noise wi to zero:

x̂i+1 = x̂i ⊞ (∆tf(x̂i,ui,0)) ; x̂0 = x̄k−1,

P̂i+1 = Fx̃i
P̂iF

T
x̃i

+ Fwi
QiF

T
wi

; P̂0 = P̄k−1,

(3.10)

where Qi is the covariance of the noise wi and the matrix Fx̃i
and Fwi are computed

as below (see more abstract derivation in [181] and more concrete derivation in [130]):

Fx̃i
= ∂(xi+1⊟x̂i+1)

∂x̃i
|x̃i=0, wi=0

Fwi
= ∂(xi+1⊟x̂i+1)

∂wi

∣∣∣
x̃i=0, wi=0

(3.11)

The forward propagation continues until reaching the end time of a new (i.e., k-th)

scan where the propagated state and covariance are denoted as x̂k, P̂k.

3.4.2.2 Residual Computation

Assume the estimate of state xk at the current iterated update (see Section 3.4.2.3)

is x̂κ
k , when κ = 0 (i.e., before the first iteration), x̂κ

k = x̂k, the predicted state from the

propagation in (3.10). Then, we project each measured LiDAR point Lpj to the global

frame Gp̂j = GT̂κ
Ik

IT̂κ
Lk

Lpj and search its nearest 5 points in the map represented by

ikd-Tree (see Section 3.5.1). The found nearest neighbouring points are then used to fit

a local small plane patch with normal vector Guj and centroid Gqj that were used in the

measurement model (see (3.8) and (3.9)). Moreover, approximating the measurement

equation (3.9) by its first order approximation made at x̂κ
k leads to

0 = hj

(
xk,

Lnj

)
≃ hj (x̂

κ
k ,0) +Hκ

j x̃
κ
k + rj

= zκj +Hκ
j x̃

κ
k + rj

(3.12)

where x̃κ
k = xk ⊟ x̂κ

k (or equivalently xk = x̂κ
k ⊞ x̃κ

k), Hκ
j is the Jacobin matrix of the

measurement model hj

(
xk,

Lnj

)
in (3.9) with respect to x̃κ

k , evaluated at zero, zκj is the

residual:

zκj = hj (x̂
κ
k ,0) = uT

j

(
GT̂κ

Ik
IT̂κ

Lk

Lpj − Gqj

)
, (3.13)
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and rj =
GuT

j
GTIk

ITL
Lnj ∈ N (0,Rj) is the total measurement noise with a covariance

Rj due to the raw LiDAR measurement noise Lnj . In practice, we set Rj to a constant

value and found it works very well.

3.4.2.3 Iterated Update

The propagated state x̂k and covariance P̂k from Section 3.4.2.1 impose a prior

Gaussian distribution for the unknown state xk. More specifically, P̂k represents the

covariance of the following error state:

xk ⊟ x̂k = (x̂κ
k ⊞ x̃κ

k)⊟ x̂k = x̂κ
k ⊟ x̂k + Jκx̃κ

k

∼ N (0, P̂k)

(3.14)

where Jκ is the partial differentiation of (x̂κ
k ⊞ x̃κ

k)⊟ x̂k with respect to x̃κ
k evaluated at

zero:

Jκ =



A
(
δGθIk

)−T
03×15 03×3 03×3

015×3 I15×15 03×3 03×3

03×3 03×15 A
(
δIθLk

)−T
03×3

03×3 03×15 03×3 I3×3


(3.15)

where A(·)−1 is defined in [130, 181], δGθIk =G R̂κ
Ik

⊟GR̂Ik and δIθLk
= IR̂κ

Lk
⊟ IR̂Lk

is the error states of IMU’s attitude and rotational extrinsic, respectively. For the first

iteration, x̂κ
k = x̂k, then Jκ = I.

Besides the prior distribution, we also have a distribution of the state due to the

measurement (3.12):

− rj = zκj +Hκ
j x̃

κ
k ∼ N (0,Rj) (3.16)

Combining the prior distribution in (3.14) with the measurement model from (3.16)

yields the posteriori distribution of the state xk equivalently represented by x̃κ
k and its

maximum a-posteriori estimate (MAP):

min
x̃κ
k

(
∥xk ⊟ x̂k∥2P̂k

+
∑m

j=1
∥zκj +Hκ

j x̃
κ
k∥2Rj

)
(3.17)
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where ∥a∥2M ≜ aTM−1a for any invertible matrix M and vector a of the proper di-

mension, and m is the number of measured points. This MAP problem can be solved

by iterated Kalman filter as below (to simplify the notation, let H = [HκT

1 , · · · ,HκT

m ]T ,

R = diag (R1, · · ·Rm),P = (Jκ)
−1

P̂k(J
κ)−T , and zκk =

[
zκ

T

1 , · · · , zκT

m

]T
):

K =
(
HTR−1H+P−1

)−1
HTR−1,

x̂κ+1
k = x̂κ

k ⊞
(
−Kzκk − (I−KH)(Jκ)−1 (x̂κ

k ⊟ x̂k)
)
.

(3.18)

Notice that the Kalman gain K computation needs to invert a matrix of the state

dimension instead of the measurement dimension used in previous works.

The above process repeats until convergence (i.e., ∥x̂κ+1
k ⊟ x̂κ

k∥ < ϵ). After conver-

gence, the optimal state and covariance estimates are:

x̄k = x̂κ+1
k , P̄k = (I−KH)P (3.19)

With the state update x̄k, each LiDAR point (Lpj) in the k-th scan is then trans-

formed to the global frame via:

Gp̄j =
GT̄Ik

IT̄Lk

Lpj ; j = 1, · · · ,m. (3.20)

The transformed LiDAR points {Gp̄j} are inserted to the map represented by ikd-Tree

(see Section 3.5). Our state estimation is summarized in Algorithm 5.

3.5 Mapping

In this section, we describe how to incrementally maintain a map (i.e., insertion

and delete) and perform k-nearest search on it by ikd-Tree.
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Algorithm 5: State Estimation
Input : Last output x̄k−1 and P̄k−1;

LiDAR raw points in current scan;
IMU inputs (am, ωm) during current scan.

1 Forward propagation to obtain state prediction x̂k and its covariance P̂k via
(3.10);

2 Backward propagation to compensate motion [130];
3 κ = −1, x̂κ=0

k = x̂k;
4 repeat
5 κ = κ+ 1;
6 Compute Jκ via (3.15) and P = (Jκ)−1P̂k(J

κ)−T ;
7 Compute residual zκj and Jacobin Hκ

j via (3.12) (3.13);
8 Compute the state update x̂κ+1

k via (3.18);
9 until ∥x̂κ+1

k ⊟ x̂κ
k∥ < ϵ;

10 x̄k = x̂κ+1
k ; P̄k = (I−KH)P;

11 Obtain the transformed LiDAR points {Gp̄j} via (3.20).
Output: Current optimal estimate x̄k and P̄k;

The transformed LiDAR points {Gp̄j}.

3.5.1 Map Management

The map points are organized into an ikd-Tree, which dynamically grows by merging

a new scan of point cloud at the odometry rate. To prevent the size of the map from

going unbound, only map points in a large local region of length L around the LiDAR

current position are maintained on the ikd-Tree. A 2D demonstration is shown in Fig.

3.3. The map region is initialized as a cube with length L, which is centered at the

initial LiDAR position p0. The detection area of LiDAR is assumed to be a detection

ball centered at the LiDAR current position obtained from (3.19). The radius of the

detection ball is assumed to be r = γR where R is the LiDAR FoV range, and γ is

a relaxation parameter larger than 1. When the LiDAR moves to a new position p′

where the detection ball touches the boundaries of the map, the map region is moved

in a direction that increases the distance between the LiDAR detection area and the

touching boundaries. The distance that the map region moves is set to a constant

d = (γ − 1)R. All points in the subtraction area between the new map region and the

old one will be deleted from the ikd-Tree by a box-wise delete operation detailed in

Section 3.5.3.
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r

(a) Initial map (b) Moving the map

r

r

L

Figure 3.3: 2D demonstration of map region management. In (a), the blue rectangle is
the initial map region with length L. The red circle is the initial detection area centered
at the initial LiDAR position p0. In (b), the detection area (dashed red circle) moves
to a new position p′(circle with solid red line) where the map boundaries are touched.
The map region is moved to a new position (green rectangle) by distance d. The points
in the subtraction area (orange area) are removed from the map (i.e., ikd-Tree).

3.5.2 Tree Structure and Construction

3.5.2.1 Data Structure

Different from many existing implementations of k-d trees which store a “bucket”

of points only on leaf nodes [147, 149, 176, 177, 179], ikd-Tree stores points on both

leaf nodes and internal nodes to better support dynamic point insertion and tree re-

balancing. Such storing mode has also shown to be more efficient in kNN search when a

single k-d tree is used [175], which is the case of the ikd-Tree. Since a point corresponds

to a single node on the ikd-Tree, we will use points and nodes interchangeably.

To enhance the readability for our readers, we provide a comprehensive explanation

about the attributes of the tree nodes here, as shown in Data Structure. The point

information (e.g., point coordinates, intensity) are stored in point. The attributes

leftchild and rightchild are pointers to its left and right child node, respectively.

The division axis to split the space is recorded in axis. The number of tree nodes,

including both valid and invalid nodes, of the (sub-)tree rooted at the current node

is maintained in attribute treesize. When points are removed from the map, the

nodes are not deleted from the tree immediately, but only setting the boolean variable

deleted to be true (see Section 3.5.3.2 for details). If the entire (sub-)tree rooted at

the current node is removed, treedeleted is set to true. The number of points deleted
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from the (sub-)tree is summed up into attribute invalidnum. The attribute range

records the range information of the points on the (sub-)tree, which is interpreted as a

circumscribed axis-aligned cuboid containing all the points. The circumscribed cuboid is

represented by its two diagonal vertices with minimal and maximal coordinates on each

dimension, respectively. Note that since re-insert functions are not used in FAST-LIO2,

the attribute pushdown and related Pushdown operation presented in Chapter 2 are no

longer required.

Data Structure: Tree node structure
1 Struct TreeNode:
2 PointType point;
3 TreeNode * leftchild, * rightchild;
4 int axis;
5 int treesize, invalidnum;
6 bool deleted, treedeleted;
7 CuboidVertices range;
8 end

3.5.2.2 Construction

Building the ikd-Tree is similar to building a static k-d tree in [92]. The ikd-Tree

splits the space at the median point along the longest dimension recursively until there

is only one point in the subspace. The attributes in Data Structure are initialized

during the construction, including calculating the tree size and range information of

(sub-)trees. The detailed implementation of constructing an ikd-Tree is provided in

Algorithm 1, Section 2.3.2.

3.5.3 Incremental Updates

The incremental updates in FAST-LIO2 requires two incremental operations in

ikd-Tree: the point-wise insertion with on-tree down-sampling and the box-wise delete.

We explain the specialized algorithms with details, followed by dynamic re-balancing

detailed in Section 3.5.4.

3.5.3.1 Point Insertion with On-tree Downsampling

In consideration of robotic applications, ikd-Tree supports simultaneous point in-

sertion and map downsampling. The algorithm is detailed in Algorithm 6. For a given
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Table 3.2: Attributes Initialization of a New Tree Node to Insert

Attribute Value Attribute Value

point p axis1 (father.axis + 1) mod k

leftchild NULL rightchild NULL

treesize 1 invalidnum 0

deleted false treedeleted false

range2 [p,p]

1 The axis is initialized using the division axis of its father node.
2 The cuboid is initialized by setting minimal and maximal vertices as the point to insert.

point p in {Gp̄j} from the state estimation module (see Algorithm 5) and downsample

resolution l, the algorithm partitions the space evenly into cubes of length l, then the

cube CD that contains the point p is found (Line 2). The algorithm only keeps the

point that is nearest to the center pcenter of CD (Line 3). This is achieved by firstly

searching all points contained in CD on the k-d tree and stores them in a point array

V together with the new point p (Line 4-5). The nearest point pnearest is obtained by

comparing the distances of each point in V to the center pcenter (Line 6). Then existing

points in CD are deleted (Line 7), after which the nearest point pnearest is inserted into

the k-d tree (Line 8). The implementation of box-wise search is similar to the box-wise

delete as introduced in Section 3.5.3.2.

The point insertion (Line 11-24) on the ikd-Tree is implemented recursively. The

algorithm searches down from the root node until an empty node is found to append

a new node (Line 12-14). The attributes of the new leaf node are initialized as Table

3.2. At each non-empty node, the new point is compared with the point stored on the

tree node along the division axis for further recursion (Line 15-20). The attributes (e.g.,

treesize, range) of those visited nodes are updated with the latest information (Line

21) as introduced in Section 3.5.3.3. A balance criterion is checked and maintained for

sub-trees updated with the new point to keep the balance property of ikd-Tree (Line 22)

as detailed in Section 3.5.4.

3.5.3.2 Box-wise Delete using Lazy Labels

In the delete operation, we use a lazy delete strategy. That is, the points are not

removed from the tree immediately but only labeled as “deleted” by setting the attribute
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Algorithm 6: Point Insertion with On-tree Downsampling
Input: Downsample Resolution l,

New Point to Insert p,
Switch of Parallelly Re-building SW

1 Algorithm Start
2 CD ← FindCube(l,p)
3 pcenter ← Center(CD);
4 V ← BoxwiseSearch(RootNode,CD);
5 V.push(p);
6 pnearest ← FindNearest (V,pcenter);
7 BoxwiseDelete(RootNode,CD)
8 Insert(RootNode,pnearest,NULL,SW );
9 Algorithm End

10

11 Function Insert(T, p, father,SW )
12 if T is empty then
13 Initialize(T,p,father );
14 else
15 ax ← T.axis;
16 if p[ax] < T.point[ax] then
17 Insert(T.leftchild,p,T,SW );
18 else
19 Insert(T.rightchild,p,T,SW );
20 end
21 AttributeUpdate(T );
22 Rebalance(T,SW );
23 end
24 End Function
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deleted to true (see Data Structure, Line 6). If all nodes on the sub-tree rooted at

node T have been deleted, the attribute treedeleted of T is set to true. Therefore the

attributes deleted and treedeleted are called lazy labels. Points labeled as “deleted”

will be removed from the tree during a re-building process (see Section 3.5.4).

Box-wise delete is implemented utilizing the range information in attribute range

and the lazy labels on the tree nodes. As mentioned in 3.5.2, the attribute range is

represented by a circumscribed cuboid CT . The pseudo-code is shown in Algorithm

7. Given the cuboid of points CO to be deleted from a (sub-)tree rooted at T , the

algorithm searches down the tree recursively and compares the circumscribed cuboid

CT with the given cuboid CO. If there is no intersection between CT and CO, the

recursion returns directly without updating the tree (Line 2). If the circumscribed

cuboid CT is fully contained in the given cuboid CO, the box-wise delete set attributes

deleted and treedeleted to true (Line 5). As all points on the (sub-)tree are deleted,

the attribute invalidnum is equal to the treesize (Line 6). For the condition that CT

intersects but not contained in CO, the current point p is firstly deleted from the tree

if it is contained in CO (Line 9), after which the algorithm looks into the child nodes

recursively (Line 10-11). The attribute update of the current node T and the balance

maintenance is applied after the box-wise delete operation (Line 12-13).

Algorithm 7: Box-wise Delete
Input : Operation Cuboid CO,

k-d Tree Node T ,
Switch of Parallelly Re-building SW

1 Function BoxwiseDelete(T,CO,SW )
2 CT ← T.range;
3 if CT ∩CO = ∅ then return;
4 if CT ⫅ CO then
5 T.treedelete, T.delete ← true;
6 T.invalidnum = T.treesize;
7 else
8 p← T.point;
9 if p ⊂ CO then T.treedelete = true;

10 BoxwiseDelete(T.leftchild,CO,SW );
11 BoxwiseDelete(T.rightchild,CO,SW );
12 AttributeUpdate(T );
13 Rebalance(T,SW );
14 end
15 End Function
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3.5.3.3 Attribute Update

After each incremental operation, attributes of the visited nodes are updated with

the latest information using function AttributeUpdate. The function calculates the

attributes treesize and invalidnum by summarizing the corresponding attributes on

its two child nodes and the point information on itself; the attribute range is determined

by merging the range information of the two child nodes and the point information stored

on it; treedeleted is set true if the treedeleted of both child nodes are true and the

node itself is deleted.

3.5.4 Re-balancing

As we discussed in Chapter 2, ikd-Tree actively monitors the balance property

and dynamically re-balances itself by only re-building the relevant sub-trees after each

incremental operation. To ensure comprehensive coverage, we present the entire process

of re-building method in Algorithm 8.

When the balance criterion in Section 2.3.4.1 is violated, the sub-tree is rebuilt

either in the main thread or the second thread, depending on the size of the tree.

Specifically, if the tree size is smaller than a predetermined value Nmax, the re-building

process occurs in the main thread. Conversely, if the size exceeds Nmax, the re-building

algorithm is executed in the second thread using the ParRebuild function. The second

thread locks all incremental updates (e.g., point insertion and deletion) pertaining to

the sub-tree, while still permitting queries (Line 12). Subsequently, the second thread

proceeds to flatten all valid points contained within the sub-tree T into a point array

V , ensuring the original sub-tree remains unchanged for potential queries during the

re-building process (Line 13). After the flattening operation, the original sub-tree is

unlocked, allowing the main thread to continue processing incremental update requests

(Line 14). These requests are concurrently recorded in a queue named operation logger.

Once the second thread successfully constructs a new balanced k-d tree T ′ from the

point array V (Line 15), the recorded update requests are re-applied to T ′ using the

IncrementalUpdates function (Line 16-18). It is important to note that the parallel

re-building switch is set to false, given that the execution is already taking place in

the second thread. Upon completion of all pending requests, the point information in
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the original sub-tree T is entirely equivalent to that in the new sub-tree T ′, except

for the improved balance of the latter in its tree structure. The algorithm proceeds to

lock node T against incremental updates and queries, subsequently replacing it with the

newly constructed node T ′ (Line 20-22). Finally, the algorithm releases the memory of

the original sub-tree (Line 23). This design ensures that during the re-building process

in the second thread, the mapping process in the main thread continues uninterrupted

at the odometry rate, albeit with reduced efficiency due to the temporary imbalance in

the k-d tree structure. Notably, the LockUpdates function does not block queries, which

can be conducted in parallel within the main thread. In contrast, the LockAll function

blocks all forms of access, including queries, but executes rapidly (i.e., requiring only

one instruction), facilitating timely queries within the main thread. Both LockUpdates

and LockAll are implemented using mutual exclusion (mutex).

Algorithm 8: Rebuild (sub-) tree for re-balancing
Input: Root node T of (sub-) tree T for re-building,

Re-build Switch SW
1 Function Rebalance(T ,SW )
2 if ViolateCriterion(T) then
3 if T.treesize < Nmax or Not SW then
4 Rebuild(T)
5 else
6 ThreadSpawn(ParRebuild,T)
7 end
8 end
9 End Function

10

11 Function ParRebuild(T)
12 LockUpdates(T);
13 V ← Flatten(T);
14 Unlock(T);
15 T ′ ← Build(V );
16 foreach op in OperationLogger do
17 IncrementalUpdates(T ′,op,false )
18 end
19 Ttemp ← T ;
20 LockAll(T);
21 T ← T ′;
22 Unlock(T);
23 Free(Ttemp);
24 End Function
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3.5.5 K-Nearest Neighbor Search

Though being similar to existing implementations in those well-known k-d tree

libraries [149, 176, 177], the nearest search algorithm on ikd-Tree is thoroughly optimized

in FAST-LIO2. The range information on the tree nodes is well utilized to speed up our

nearest neighbor search using a “bounds-overlap-ball” test detailed in [175]. A priority

queue q is maintained to store the k-nearest neighbors so far encountered and their

distance to the target point. When recursively searching down the tree from its root

node, the minimal distance dmin from the target point to the cuboid CT of the tree

node is calculated firstly. If the minimal distance dmin is no smaller than the maximal

distance in q, there is no need to process the node and its offspring nodes. Furthermore,

in FAST-LIO2 (and many other LiDAR odometry), only when the neighbor points are

within a given threshold around the target point would be viewed as inliers and hence

used in the state estimation, this naturally provides a maximal search distance for a

ranged search of k-nearest neighbors [176]. In either case, the ranged search prunes the

algorithm by comparing dmin with the maximal distance, thus reducing the amount of

backtracking to improve the time performance. It should be noted that our ikd-Tree

supports multi-thread k-nearest neighbor search for parallel computing architectures.

3.6 Benchmark Results

In this section, extensive experiments in terms of accuracy, robustness, and compu-

tational efficiency are conducted on various open datasets. We first evaluate our data

structure, i.e., ikd-Tree, against other data structures for kNN search on 18 dataset

sequences of different sizes. Then in Section 3.6.3, we compare the accuracy and pro-

cessing time of FAST-LIO2 on 19 sequences. All the sequences are chosen from 5 differ-

ent datasets collected by both solid-state LiDAR [21] and spinning LiDARs. The first

dataset is from the work LILI-OM [163] and is collected by a solid-state 3D LiDAR Livox

Horizon3, which has non-repetitive scan pattern and 81.7° (Horizontal) × 25.1° (Vertical)

FoV, at a typical scan rate of 10Hz, referred to as lili. The gyroscope and accelerome-

ter measurements are sampled at 200Hz by a 6-axis Xsens MTi-670 IMU. The data is

recorded in the university campus and urban streets with structured scenes. The second
3https://www.livoxtech.com/horizon

https://www.livoxtech.com/horizon
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dataset is from the work LIO-SAM [169] in MIT campus and contains several sequences

collected by a VLP-16 LiDAR4 sampled at 10Hz and a MicroStrain 3DM-GX5-25 9-axis

IMU sampled at 1000Hz, referred to as liosam. It contains different kinds of scenes, in-

cluding structured buildings and forests on campus. The third dataset “utbm” [182] is

collected with a human-driving robocar in maximum 50 km/h speed which has two 10Hz

Velodyne HDL-32E LiDAR5 and 100Hz Xsens MTi-28A53G25 IMU. In this paper, we

only consider the left LiDAR. The fourth dataset “ulhk ” [183] contains the 10Hz LiDAR

data from Velodyne HDL-32E and 100Hz IMU data from a 9-axis Xsens MTi-10 IMU.

All the sequences of utbm and ulhk are collected in structured urban areas by a human-

driving vehicle while ulhk also contains many moving vehicles. The last one, “nclt” [184]

is a large-scale, long-term autonomy UGV (unmanned ground vehicle) dataset collected

in the University of Michigan’s North Campus. The nclt dataset contains 10Hz data

from a Velodyne HDL-32E LiDAR and 50Hz data from Microstrain MS25 IMU. The

nclt dataset has a much longer duration and amount of data than other datasets and

contains several open scenes such as a large open parking lot. The datasets information

including the sensors’ type and data rate is summarized in Table 3.3. The details about

all the 37 sequences used in this section, including name, duration, and distance, are

listed in Table 3.4.

Table 3.3: The Datasets for Benchmark

LiDAR IMU
Type Line Type Rate

lili Solid-state — 6-axis 200Hz
utbm Spinning 32 6-axis 100Hz
ulhk Spinning 32 9-axis 100Hz
nclt Spinning 32 9-axis 100Hz
liosam Spinning 16 9-axis 1000Hz

1 In order to make LIO-SAM works, the IMU rate in dataset nclt is increased from 50Hz to 100Hz
through zero-order interpolation.

3.6.1 Implementation

We implemented the proposed FAST-LIO2 system in C++ and Robots Operating

System (ROS). The iterated Kalman filter is implemented based on the IKFOM toolbox

presented in our previous work [181]. In the default configuration, the local map size
4https://velodynelidar.com/products/puck-lite/
5https://velodynelidar.com/products/hdl-32e/

https://velodynelidar.com/products/puck-lite/
https://velodynelidar.com/products/hdl-32e/
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Table 3.4: Details of all the sequences for the Benchmark

Name Duration
(min:sec)

Distance
(km)

lili_1 FR-IOSB-Tree 2:58 0.36
lili_2 FR-IOSB-Long 6:00 1.16
lili_3 FR-IOSB-Short 4:39 0.49
lili_4 KA-URBAN-Campus-1 5:58 0.50
lili_5 KA-URBAN-Campus-2 2:07 0.20
lili_6 KA-URBAN-Schloss-1 10:37 0.65
lili_7 KA-URBAN-Schloss-2 12:17 1.10
lili_8 KA-URBAN-East 20:52 3.70
utbm_1 20180713 16:59 5.03
utbm_2 20180716 15:59 4.99
utbm_3 20180717 15:59 4.99
utbm_4 20180718 16:39 5.00
utbm_5 20180720 16:45 4.99
utbm_6 20190110 10:59 3.49
utbm_7 20190412 12:11 4.82
utbm_8 20180719 15:26 4.98
utbm_9 20190131 16:00 6.40
utbm_10 20190418 11:59 5.11
ulhk_1 HK-Data20190316-1 2:55 0.23
ulhk_2 HK-Data20190426-1 2:30 0.55
ulhk_3 HK-Data20190317 5:18 0.62
ulhk_4 HK-Data20190117 5:18 0.60
ulhk_5 HK-Data20190316-2 6:05 0.66
ulhk_6 HK-Data20190426-2 4:20 0.74
nclt_1 20120118 93:53 6.60
nclt_2 20120122 87:19 6.36
nclt_3 20120202 98:37 6.45
nclt_4 20120115 111:46 4.01
nclt_5 20120429 43:17 1.86
nclt_6 20120511 84:32 3.13
nclt_7 20120615 55:10 1.62
nclt_8 20121201 75:50 2.27
nclt_9 20130110 17:02 0.26
nclt_10 20130405 69:06 1.40
liosam_1 park 9:11 0.66
liosam_2 garden 5:58 0.46
liosam_3 campus 16:26 1.44
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L is chosen as 1000m, and the LiDAR raw points are directly fed into state estimation

after a 1:4 (one out of four LiDAR points) temporal downsampling. Besides, the spatial

downsample resolution (see Algorithm 6) is set to l = 5m for all the experiments. The

parameter of ikd-Tree is set to αbal = 0.6, αdel = 0.5 andNmax = 1500. The parameter of

Kalman filter is set to Rj = 0.01. The computation platform for benchmark comparison

is a lightweight UAV onboard computer: DJI Manifold 2-C6 with a 1.8GHz quad-

core Intel i7-8550U CPU and 8GB RAM. For FAST-LIO2, we also test it on an ARM

processor that is typically used in embedded systems with reduced power and cost. The

ARM platform is Khadas VIM37 which has a low-power 2.2GHz quad-core Cortex-A73

CPU and 4GB RAM, denoted as the keyword “ARM”. We denote “FAST-LIO2 (ARM)”

as the implementation of FAST-LIO2 on the ARM-based platform.

3.6.2 Data structure Evaluation

3.6.2.1 Evaluation Setup

We select three state-of-art implementations of dynamic data structure to compare

with our ikd-Tree: The boost geometry library implementation of R∗-tree [185], the Point

Cloud Library implementation of octree [186] and the nanoflann [179] implementation

of dynamic k-d tree. These tree data structure implementations are chosen because of

their high implementation efficiency. Moreover, they support dynamic operations (i.e.,

point insertion, delete) and range (or radius) search that is necessary to be integrated

with FAST-LIO2 for a fair comparison with ikd-Tree. For the map downsampling, since

the other data structures do not support on-tree downsampling as ikd-Tree, we apply a

similar approach as detailed in 3.5.3 by utilizing their ability of range search (for octree

and R∗-tree) or radius search (for nanoflann k-d tree). More specifically, for octree

and R∗-tree, their range search directly returns points within a downsampling cube CD

(see Algorithm 6). For nanoflann k-d tree, the points inside the circumcircle of the

downsampling cube CD are obtained by radius search, after which points outside the

cube are filtered out via a linear approach while points inside the cube CD are retained.

Finally, similar to Algorithm 6, points in CD other than the nearest point to the center

are removed from the map. For the box-wise delete operation required by map move
6https://www.dji.com/cn/manifold-2/specs
7https://www.khadas.com/vim3

https://www.dji.com/cn/manifold-2/specs
https://www.khadas.com/vim3
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(see Section 3.5.1), it is achieved by removing points within the specified cuboid CO

one by one according to the point indices obtained from the respective range or radius

search.

All the four data structure implementations are integrated with FAST-LIO2 and

their time performance are evaluated on 18 sequences of different sizes. We run the

FAST-LIO2 with each data structure for each sequence and record the time for kNN

search, point insertion (with map downsampling), box-wise delete due to map move, the

number of new scan points, and the number of map points (i.e., tree size) at each step.

The number of nearest neighbors to find is 5.
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Figure 3.4: Data structure comparison over different tree size. The upper figure shows
the average processing time of searching five nearest neighbors. The bottom figure shows
the average processing time of inserting one point to the data structure.

3.6.2.2 Comparison Results

We first compare the time consumption of point insertion (with map downsampling)

and kNN search at different tree sizes across all the 18 sequences. For each evaluated

tree size S, we collect the processing time at tree size in range of [0.95S, 1.05S] to obtain

a sufficient number of samples. Fig. 3.4 shows the average time consumption of insertion

and kNN search per single target point. The octree achieves the best performance in

point insertion, albeit the gap with the other is small (below 1µs), but its inquiry time is

much higher due to the unbalanced tree structure. For nanoflann k-d tree, the insertion
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time is often slightly shorter than the ikd-Tree and R∗-tree, but huge peaks occasionally

occur due to its logarithmic structure of organizing a series of k-d trees. Such peaks

severely degrade the real-time ability, especially when maintaining a large map. For

k-nearest neighbor search, nanoflann k-d tree consumes slightly higher time than our

ikd-Tree, especially when the tree size becomes large (105 ∼ 106). The R∗-tree achieves

a similar insertion time with ikd-Tree but with a significantly higher search time for large

tree sizes. Finally, we can see that the time of insertion with on-tree downsampling and

kNN search of ikd-Tree is indeed proportional to log n, which is consistent with the time

complexity analysis in Section 2.4.

For any map data structure to be used in LiDAR odometry and mapping, the total

time for map inquiry (i.e., kNN search) and incremental map update (i.e., point insertion

with downsampling and box-delete due to map move) ultimately affects the real-time

ability. This total time is summarized in Table 3.5. It is seen that octree performs the

best in incremental updates in most datasets, followed closely by the ikd-Tree and the

nanoflann k-d tree. In kNN search, the ikd-Tree has the best performance while the

ikd-Tree and nanoflann k-d tree outperforms the other two by large margins, which is

consistent with the past comparative study [94, 176]. The ikd-Tree achieves the best

overall performance among all other data structures.

We should remark that while the nanoflann k-d tree achieves seemly similar perfor-

mance with ikd-Tree, the peak insertion time has more profound causes, and its impact

on LiDAR odometry and mapping is severe. The nanoflann k-d tree deletes a point by

only masking it without actually deleting it from the tree. Consequently, even with map

downsampling and map move, the deleted points remain on the tree affecting the sub-

sequent inquiry and insertion performance. The resultant tree size grows much quicker

than ikd-Tree and others, a phenomenon also observed from Fig. 3.4. The effect could

be small for short sequences (ulhk and lili) but becomes evident for long sequences (utbm

and nclt). The tree size of nanoflann k-d tree exceeds 6× 106 in utbm datasets and 107

in nclt datasets, whereas the maximal tree size of ikd-Tree reaches 2×106 and 3.6×106,

respectively. The maximal processing time of incremental updates on nanoflann all ex-

ceeds 3 s in seven utbm datasets and 7 s in three nclt datasets while our ikd-Tree keeps

the maximal processing time at 214.4ms in nclt_2 and smaller than 150ms in the rest

17 sequences. While this peaked processing time of nanoflann k-d tree does not heavily
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affect the overall real-time ability due to its low occurrence, it causes a catastrophic

delay for subsequent control.

3.6.3 Accuracy Evaluation

In this section, we compare the overall system FAST-LIO2 against other state-of-

the-art LiDAR-inertial odometry and mapping systems, including LILI-OM [163], LIO-

SAM [169], and LINS [38]. Since FAST-LIO2 is an odometry without any loop detection

or correction, for the sake of fair comparison, the loop closure module of LILI-OM and

LIO-SAM was deactivated, while all other functions such as sliding window optimization

are enabled. We also perform ablation study on FAST-LIO2: to understand the influence

of the map size, we run the algorithm in various map sizes L of 2000m, 800m, 600m,

besides the default 1000m; to evaluate the effectiveness of direct method against feature-

based methods, we add a feature extraction module from FAST-LIO [130] (optimized

for solid-state LiDAR) and BALM [46] (optimized for spinning LiDAR). The results

are reported under the keyword “Feature”. All the experiments are conducted in the

Manifold 2-C platform (Intel).

We perform evaluations on all the five datasets: lili, lisam, utbm, ulhk, and nclt.

Since not all sequences have ground truth (affected by the weather, GPS quality, etc.),

we select a total of 19 sequences from the five datasets. These 19 sequences either

have a good ground truth trajectory (as recommended by the dataset author) or end at

the starting position. Therefore, two criteria, absolute translational error (RMSE) and

end-to-end error, are computed and evaluated.

3.6.3.1 RMSE Benchmark

The RMSE are computed and reported in Table 3.6. It is seen that increasing the

map size of FAST-LIO2 increases the overall accuracy as the new can is registered to

older historical points. When the map size is over 2000m, the accuracy increment is not

persistent as the odometry drift may cause possible false point matches with too old map

points, a typical phenomenon of any odometry. Moreover, the direct method outperforms

the feature-based variant of FAST-LIO2 in most sequences except for two, nclt_4 and

nclt_6, where the difference is tiny and negligible. This proves the effectiveness of the

direct method.
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Compared with other LIO methods, FAST-LIO2 or its variant achieves the best

performances in 17 of all 19 data sequences and is the most robust LIO method among

all the experiments. The only two exceptions are on ulhk_4 and nclt_9 where LILI-OM

shows slightly higher accuracy than FAST-LIO. Notably, LILI-OM shows very large

drift in utbm_9, nclt_4, nclt_6, nclt_8 and nclt_10. The reason is that its sliding-

window back-end fusion (mapping) fails as the map point number grows large. Hence

its pose estimation relies solely on the front-end odometry which quickly accumulates

the drift. LINS works similarly badly in nclt_5, nclt_6, nclt_7, nclt_10. LIO-SAM

also shows large drift at nclt_4, nclt_10 due to the failure of back-end factor graph

optimization with the very long time and long-distance data. The video of an example,

nclt_10 sequence, is available at https://youtu.be/2OvjGnxszf8. Besides, on other

sequences where LILI-OM, LIO-SAM, and LINS can work normally, their performance

is still outperformed by FAST-LIO2 with large margins. Finally, it should be noted that

the sequence liosam_1 is directly drawn from the work LIO-SAM [169] so the algorithm

has been well-tuned for the data. However, FAST-LIO2 still achieves higher accuracy.

3.6.3.2 Drift Benchmark

The end-to-end errors are reported in Table 3.7. The overall trend is similar to the

RMSE benchmark results. FAST-LIO2 or its variants achieves the lowest drift in 5 of

the total 7 sequences. We show an example, ulhk_6 sequence, in the video available

at https://youtu.be/2OvjGnxszf8. It should be noted that the LILI-OM has tuned

parameters for each of their own sequences lili while parameters of FAST-LIO2 are

kept the same among all the sequences. LIO-SAM shows good performance in its own

sequences liosam_2 and liosam_3 but cannot keep it on other sequences such as ulhk.

The LINS performs worse than LIO-SAM in liosam and ulhk datasets and failed in

liosam_2 (garden sequence from [169]) because the two sequences are recorded with

large rotation speeds while the feature points used by LINS are too few. Also, in most

of the sequences, the feature-based FAST-LIO performs similarly to the direct method

except for the sequence lili_7, which contains many trees and large open areas that

feature extraction will remove many effective points from trees and faraway buildings.

https://youtu.be/2OvjGnxszf8
https://youtu.be/2OvjGnxszf8
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Table 3.7: End to end errors (meters)

lil
i_

6

lil
i_

7

lil
i_

8

ul
hk

_
5

ul
hk

_
6

lio
sa

m
_

2

lio
sa

m
_

3

FAST-LIO2(2000m) 0.14 1.92 21.35 0.33 0.12 <0.1 9.23
FAST-LIO2(1000m) <0.1 1.63 17.39 0.39 <0.1 <0.1 9.50
FAST-LIO2(800m) <0.1 1.88 21.59 0.40 <0.1 <0.1 9.49
FAST-LIO2(600m) 0.22 1.37 23.74 0.39 <0.1 <0.1 9.23
FAST-LIO2(Feature) 0.20 3.89 21.99 0.32 <0.1 <0.1 12.11
LILI-OM 0.80 4.13 15.60 1.84 7.89 1.95 13.79
LIO-SAM —1 — — 0.83 2.88 <0.1 8.61
LINS — — — 0.90 6.92 ×2 29.90

1 Since the LIO-SAM and LINS are both developed only for spinning LiDAR, they do not work
on the lili dataset which is recorded by a solid-state LiDAR Livox Horizon.

2 × denotes that the system totally failed.

3.6.4 Processing Time Evaluation

Table 3.8 shows the processing time of FAST-LIO2 with different configurations,

LILI-OM, LIO-SAM, and LINS in all the sequences. The FAST-LIO2 is an integrated

odometry and mapping architecture, where at each step the map is updated following

immediately the odometry update. Therefore, the total time (“Total” in Table 3.8) in-

cludes all possible procedures occurred in the odometry, including feature extraction if

any (e.g., for the feature-based variant), motion compensation, kNN search, and state

estimation, and mapping. It should be noted that the mapping includes point insertion,

box-wise delete, and tree re-balancing. On the other hand, LILI-OM, LIO-SAM, and

LINS all have separate odometry (including feature extraction, and rough pose estima-

tion) and mapping (such as back-end fusion in LILI-OM [163], incremental smoothing

and mapping in LIO-SAM [169] and Map-refining in LINS [38]), whose average process-

ing time per LiDAR scan are referred to as “Odo.” and “Map.” respectively in Table 3.8.

The two processing time is summed up to compare with FAST-LIO2.

From Table 3.8, we can see that the FAST-LIO2 consumes considerably less time

than other LIO methods, being ×8 faster than LILI-OM, ×10 faster than LIO-SAM,

and ×6 faster than LINS. Even if only considering the processing time for odometry

of other methods, FAST-LIO2 is still faster in most sequences except for four. The

overall processing time of fast-LIO2, including both odometry and mapping, is almost

the same as the odometry part of LIO-SAM, ×3 faster than LILI-OM and over ×2
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faster than LINS. Comparing the different variants of FAST-LIO2, the processing time

for different map sizes are very similar, meaning that the mapping and kNN search with

our ikd-Tree is insensitive to map size. Furthermore, the feature-based variant and direct

method FAST-LIO2 have roughly similar processing times. Although feature extraction

takes additional processing time to extract the feature points, it leads to much fewer

points (hence less time) for the subsequent kNN search and state estimation. On the

other hand, the direct method saves the feature extraction time for points registration.

Allowed by the superior computation efficiency of FAST-LIO2, we further implemented

it with the default map size (1000m, see 3.6.3) on the Khadas VIM3 (ARM) embedded

computer. The run time results show that FAST-LIO2 can also achieve 10Hz real-time

performance that has not been demonstrated on an ARM-based platform by any prior

work.

3.7 Real-world Experiments

3.7.1 Platforms

Figure 3.5: Three different platforms: (a) 280 mm wheelbase small scale quadrotor
UAV carrying a forward-looking Livox Avia LiDAR, (b) handheld platforms, (c) 750mm
wheelbase quadrotor UAV carrying a down-facing Livox Avia LiDAR. All three platforms
carry the same DJI Manifold-2C onboard computer. The video of real-world experiments
is available at https://youtu.be/2OvjGnxszf8.

Besides the benchmark evaluation where the datasets are mainly collected on the

ground, we also test our FAST-LIO2 in a variety of challenging data collected by other

platforms (see Fig. 3.5), including a 280mm wheelbase quadrotor for the application

of UAV navigation, a handheld platform for the application of mobile mapping, and a

GPS-navigated 750 mm wheelbase quadrotor UAV for the application of aerial mapping.

The 280 mm wheelbase quadrotor is used for indoor aggressive flight test, see section

3.7.2.2, so that the LiDAR is installed face-forward. The 750mm wheelbase quadrotor

https://youtu.be/2OvjGnxszf8
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UAV, developed by Ambit-Geospatial company8, is used for the aerial scanning, see

section 3.7.3, so that the LiDAR is facing down to the ground. In all platforms, we use

a solid-state 3D LiDAR Livox Avia9 which has a built-in IMU (model BMI088), a 70.4°

(Horizontal) × 77.2° (Vertical) circular FoV, and an unconventional non-repetitive scan

pattern that is different from the Livox Horizon or Velodyne LiDARs used previously in

Section 3.6. Since FAST-LIO2 does not extract features, it is naturally adaptable to this

new LiDAR. In all the following experiments, FAST-LIO2 uses the default configurations

(i.e., direct method with map size 1000m). Unless stated otherwise, the scan rate is set

at 100Hz, and the computation platform is the DJI manifold 2-C used in the previous

section.

3.7.2 Private Dataset

3.7.2.1 Detail Evaluation of Processing Time

In order to validate the real-time performance of FAST-LIO2, we use the handheld

platform to collect a sequence at 100Hz scan rate in a large-scale outdoor-indoor hybrid

scene. The sensor returns to the starting position after traveling around 650m. It should

be noted that the LILI-OM also supports solid-state LiDAR, but it fails in this data

since its feature extraction module produces too few features at the 100Hz scan rate.

The map built by FAST-LIO2 in real-time is shown in Fig. 3.6, which shows small drift

(i.e., 0.14m) and good agreement with satellite maps.

For the computation efficiency, we compare FAST-LIO2 with its predecessor FAST-

LIO [130] on the Intel (Manifold 2-C) computer. For FAST-LIO2, we additionally test on

the ARM (Khadas VIM3) onboard computer. The difference between these two methods

is that FAST-LIO is a feature-based method, and it retrieves map points in the current

FoV to build a new static k-d tree for kNN search at every step. The detailed time

consumption of individual components for processing a scan is shown in Table 3.9. The

preprocessing refers to data reception and formatting, which are identical for FAST-LIO

and FAST-LIO2 and are below 0.1ms. The feature extraction of FAST-LIO is 0.9ms

per scan, which is saved by FAST-LIO2. The feature extraction leads to fewer point

numbers than FAST-LIO2 (447 versus 756), hence less time spent in state estimation
8http://www.ambit-geospatial.com.hk
9https://www.livoxtech.com/de/avia

http://www.ambit-geospatial.com.hk
https://www.livoxtech.com/de/avia
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Figure 3.6: Large-scale scene experiment. The handheld platform is used to collect a
sequence at 100Hz scan rate in a large-scale outdoor-indoor hybrid scene (the Centennial
campus of the University of Hong Kong).
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(0.99ms versus 1.66ms). As a result, the overall odometry time of the two methods

is nevertheless very close (1.92ms for FAST-LIO versus 1.69ms for FAST-LIO2). The

difference between these two methods becomes drastic when looking at the mapping

module, which includes map points retrieve and k-d tree building for FAST-LIO, and

point insertion, box-wise delete due to map move and tree rebalancing for FAST-LIO2.

As can be seen, the averaging mapping time per scan for FAST-LIO exceeds 10ms hence

cannot be processed in real-time for this large scene. On the other hand, the mapping

time for FAST-LIO2 is well below the sampling period. The overall time for FAST-

LIO2 when processing 756 points per scan, including both odometry and mapping, is

only 1.82ms for the Intel processor and 5.23ms for the ARM processor.

Table 3.9: Mean Time Consumption in Miliseconds by Individual Components when
Processing A LiDAR Scan

FAST-LIO FAST-LIO2

Intel Intel ARM

Preprocessing 0.03ms 0.03ms 0.05ms
Feature extraction 0.90ms 0ms 0ms
State estimation 0.99ms 1.66ms 4.75ms
Mapping 13.81ms 0.13ms 0.43ms
Total 15.83ms 1.82ms 5.23ms
Num. of points used 447 756 756
Num. of threads 4 4 2

The time consumption and the number of map points at each scan are shown in Fig.

3.7. As can be seen, the processing time for FAST-LIO2 running on the ARM processor

occasionally exceeds the sampling period 10ms, but this occurred very few and the

average processing time is well below the sampling period. The occasional timeout

usually does not affect a subsequent controller since the IMU propagated state estimate

could be used during this short period. On the Intel processor, the processing time for

FAST-LIO2 is always below the sampling period. On the other hand, the processing

time for FAST-LIO quickly grows above the sampling period due to the growing number

of map points. Notice that the considerably reduced processing time for FAST-LIO2 is

achieved even at a much higher number of map points. Since FAST-LIO only retains

map points within its current FoV, the number could drop if the LiDAR faces a new

area containing few previously sampled map points. Even with fewer map points, the

processing time for FAST-LIO is still much higher, as analyzed above. Moreover, since
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Figure 3.7: The processing time for each LiDAR scan of FAST-LIO and FAST-LIO2.

FAST-LIO builds a new k-d tree at every step, the building time has a time complexity

O(n log n) [92] where n is the number of map points in the current FoV. This is why the

processing time for FAST-LIO is almost linearly correlated to the map size. In contrast,

the incremental updates of our ikd-Tree has a time complexity of O(log n), leading to a

much slower increment in processing time over map size.

3.7.2.2 Aggressive UAV Flight Experiment

Figure 3.8: The flip experiment. (a) the small scale UAV; (b) the onboard camera
showing first person view (FPV) images during the flip; (c) the third person view images
of the UAV during the flip; (d) the estimated UAV pose with FAST-LIO2.
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Figure 3.9: The actual environment and the 3D map built by FAST-LIO2 during the
flip.
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Figure 3.10: The attitude, position, angular velocity and linear velocity in the UAV
flip experiment. The notation “gt” stands for the position ground truth collected by a
VICON motion capture system.
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In order to show the application of FAST-LIO2 in mobile robotic platforms, we

deploy a small-scale quadrotor UAV carrying the Livox AVIA LiDAR sensor and con-

duct an aggressive flip experiment as shown in Fig. 3.8. In this experiment, the UAV

first takes off from the ground and hovers at the height of 1.2m for a while, then it

performs a quick flip, after which it returns to the hover flight under the control of an

on-manifold model predictive controller [187] that takes state feedback from the FAST-

LIO2. The pose estimated by FAST-LIO2 is shown in Fig. 3.8 (d), which agrees well

with the actual UAV pose. The real-time mapping (the point clouds are accumulated

from the beginning, including all the scans during the flip) of the environment is shown

in Fig. 3.9. In addition, Fig. 3.10 shows the position, attitude, angular velocity, and lin-

ear velocity during the experiments. The average and maximum angular velocity during

the flip reaches 1023 deg/s and 1242 deg/s, respectively (from 44 s to 44.5 s). The RMSE

error during the flight (from 18.0 s to 50.0 s) is 0.0186m when compared to the ground-

truth trajectory measured by a VICON motion capture system. FAST-LIO2 takes only

2.21ms on average per scan, which suffices the real-time requirement of controllers. By

providing high-accuracy odometry and a high-resolution 3D map of the environment at

100Hz, FAST-LIO2 is very suitable for a robots’ real-time control and obstacle avoid-

ance. For example, our prior work [188] demonstrated the application of FAST-LIO2 on

an autonomous UAV avoiding dynamic small objects (down to 9mm) in complex indoor

and outdoor environments.

3.7.2.3 Fast Motion Handheld Experiment

Here we test FAST-LIO2 in a challenging fast motion with large velocity and angular

velocity. The sensor is held on hands while rushing back and forth on a footbridge (see

Fig. 3.11). Fig. 3.12 shows the attitude, position, angular velocity, linear velocity

and extrinsic estimates in the fast motion handheld experiments. It is seen that the

maximum velocity reaches 7m/s and angular velocity varies around ±100 deg/s. The

initial states of rotational and translation extrinsic are set to (5°, 5°, 5°) and (0, 0, 0).

It can be seen that both the rotational and translation extrinsic converge close to the

ground truth with small differences possibly due to the manufacturing imperfections. In

order to show the performance of FAST-LIO2, the experiment starts and ends at the

same point. The end-to-end error in this experiment is less than 0.06m (see Fig. 3.12)
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while the total trajectory length is 81m.

Figure 3.11: The mapping results of FAST-LIO2 in the fast motion handheld experi-
ment.

3.7.3 Outdoor Aerial Experiment

One important application of 3D LiDARs is airborne mapping. In order to validate

FAST-LIO2 for this possible application, an aerial experiment is conducted. A larger

UAV carrying our LiDAR sensor is deployed. The UAV is equipped with GPS, IMU,

and other flight avionics and can perform automatic waypoints following based on the

onboard GPS/IMU navigation. Note that the UAV-equipped GPS and IMU are only

used for the UAV navigation, but not for FAST-LIO2, which uses data only from the

LiDAR sensor. The LiDAR scan rate is set to 10Hz in this experiment. A few flights

are conducted in several locations in the Hong Kong Wetland Park at Nan Sang Wai,

Hong Kong. The real-time mapping results are shown in Fig. 3.13. It is seen that FAST-

LIO2 works quite well in these vegetation environments. Many fine structures such as

tree crowns, lane marks on the road, and road curbs can be clearly seen. Fig. 3.13 also

shows the flight trajectories computed by FAST-LIO2. We have visually compared these

trajectories with the trajectories estimated by the UAV onboard GPS/IMU navigation,

and they show good agreement. Due to technical difficulties, the GPS trajectories are
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Figure 3.12: The attitude, position, angular velocity, linear velocity, rotational and
translational extrinsic in the fast motion handheld experiment. The extrinsic ground
truth (denoted as gt in the figure) is obtained from the manufactuer’s manual. Notice
that the ground truth rotational extrinsic are all zeros, causing the gt-x, gt-y and gt-z
to overlap.

Figure 3.13: Real-time mapping results with FAST-LIO2 for airborne mapping. The
data is collected in the Hong Kong Wetland Park by a UAV with a down-facing Livox
Avia LiDAR. The flight heights are 30m (a), 30m (b) and 30m (c).
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not available here for quantitative evaluation. Finally, the average processing time per

scan for these three environments is 19.6ms, 23.9ms, and 23.7ms, respectively. It should

be noted that the LILI-OM fails in all these three data sequences because the extracted

features are too few when facing the ground.

3.8 Discussion

In this section we discuss the proposed FAST-LIO2 framework in terms of efficiency,

accuracy, robustness and possible applications.

3.8.1 Efficiency

Existing ICP-based LiDAR(-inertial) odometry methods, such as LOAM [33], LIO-

SAM [169], LILI-OM [163], LINS [38] and our prior work [130], typically build a k-d

tree of the point-cloud map from scratch, causing the building time to grow dynamically

with the exploration of new areas. To bound this building time, only points in a local

area are usually used to build the k-d tree, leading to a constant (and often significant)

building time. In contrast, FAST-LIO2 uses an incremental k-d tree structure, ikd-Tree,

which dynamically adds new points to the existing tree structure and only re-balances

the updated (sub-)tree partially. This incremental update has a considerably lower

computation cost than a complete k-d tree building and constitutes the key to the

efficiency of FAST-LIO2. The resultant system is able to run at a very high odometry

and mapping rate (e.g., up to 100Hz) on computationally-constrained platforms (UAV

onboard computer and ARM-based processors).

3.8.2 Accuracy

The accuracy of FAST-LIO2 benefits from twofold: direct registration of the raw

LiDAR points (as opposed to feature points) and the use of larger local map (e.g., 1km)

in scan registration, both are enabled by our efficient map representation, ikd-Tree. The

use of raw points enables to exploit more subtle features in the environments while

a larger local map establishes more geometrical constraints for registering a new scan.

Since LiDARs points have extremely high temporal resolution, a temporal downsampling

(e.g., one out of four LiDAR points) can effectively lower the computation load without
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affecting the accuracy. We also notice that further increasing the local map does not

persistently improve the accuracy due to the possible false point matches caused by

odometry drift.

The use of the center-most point in a downsampling cube leads to a more evenly

distributed point map which also contributes to the accuracy of FAST-LIO2. We also

considered other alternative choices (e.g., mean or median point) and found they usually

have lower accuracy. The primary reason is that, the odometry drift will cause the new

points, when added to the map, to bias the mean or median point in a downsampling

cube. The biased map points will in turn further bias the plane estimation and hence the

subsequent state estimate. Another drawback of using mean or median points is that

they cause constant point update on the ikd-Tree, which leads to frequent tree re-build

and hence a higher computation cost.

Another possible way to improve the system accuracy is splitting a scan into multiple

smaller sub-scans to be processed sequentially. The scan split will reduce the propagation

time of IMU measurements, which in turn could improve the accuracy of the forward

propagation for state prediction and the backward propagation for motion distortion

compensation. However, fewer measurements in a sub-scan also make the state estimate

more sensitive to false point matches. In FAST-LIO2, we choose 100Hz update rate.

3.8.3 Robustness

In Section 3.7, the FAST-LIO2 was proven to work stably in high angular speed

(over 1000 deg/s) and high frame rate (100Hz). Such robustness comes from two reasons:

firstly, the direct raw point registration uses more LiDAR measurements in high frame

rate and aggressive motion compared to the feature based methods; secondly, the timely

updated (at the frame rate) map allows each new scan to be registered to map points

of the most recent scans, which share large FoVs with the new scan. This allows FAST-

LIO2 to reliably track even very fast robots’ motions.

3.8.4 Applications

FAST-LIO2 is a computationally efficient, robust, and accurate odometry suitable

for robots navigation and control. The dense point map it builds in real-time can be
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used for collision check in trajectory generation even in the presence of small dynamic

obstacles [188], and the high-rate odometry provides low-latency feedback to controllers

[187]. FAST-LIO2 could also be used in small-scale mapping applications where the

odometry drift is not significant. For large-scale mapping, FAST-LIO2 can be used

with additional back-end optimization such as sliding window bundle adjustment [46]

or incremental smoothing and mapping techniques [170] to achieve better long-term

accuracy. A loop-closure module also can be easily integrated with FAST-LIO2.

FAST-LIO2 cannot work in completely degenerated environments where no geo-

metrical structures exists in the LiDAR FoV (hence no or very few LiDAR points).

Examples include facing the LiDAR to open sea, the sky, the ground, a single large

wall, or in close proximity to objects (e.g., within 1m) causing no points measurements.

In these scenarios, FAST-LIO2 can be augmented by other sensors such as GPS and

cameras [189].

3.9 Conclusion

This paper proposed FAST-LIO2, a direct and robust LIO framework significantly

faster than the current state-of-the-art LIO algorithms while achieving highly compet-

itive or better accuracy in various datasets. The gain in speed is due to removing the

feature extraction module and the highly efficient mapping, which is enabled by ikd-

Tree. A large amount of experiments in open datasets shows that the proposed ikd-Tree

can achieve the best overall performance among the state-of-the-art data structure for

kNN search in LiDAR odometry. As a result of the mapping efficiency, the accuracy

and the robustness in fast motion and sparse scenes are also increased by utilizing more

points in the odometry. A further benefit of FAST-LIO2 is that it is naturally adaptable

to different LiDARs due to the removal of feature extraction, which has to be carefully

designed for different LiDARs according to their respective scanning pattern and density.
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Chapter 4

Occupancy Grid Mapping

without Ray-Casting

for High-resolution LiDAR

Sensors

With FAST-LIO2 presented in the previous chapter, we have successfully resolved

the problem of self-localization for mobile robots in unknown environments. This chapter

goes on to address another challenge for autonomous navigation in unknown environ-

ments for robotics, which is to reason about the unknown and known regions of the

environment, commonly known as occupancy mapping. This chapter presents an effi-

cient occupancy mapping framework for high-resolution LiDAR sensors, termed D-Map.

The framework introduces three main novelties to address the computational efficiency

challenges of occupancy mapping. Firstly, we use a depth image to determine the oc-

cupancy state of regions instead of the traditional ray-casting method. Secondly, we

introduce an efficient on-tree update strategy on a tree-based map structure. These two

techniques avoid redundant visits to small cells, significantly reducing the number of cells

to be updated. Thirdly, we remove known cells from the map at each update by leverag-

ing the low false alarm rate of LiDAR sensors. This approach enhances our framework’s

update efficiency by shrinking the map size. As this approach updates the map in a

decremental manner by reducing the size, we name our framework D-Map. To support
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our design, we provide theoretical analyses of the accuracy of the depth image projection

and time complexity of occupancy updates. Furthermore, we conduct extensive bench-

mark experiments on various LiDAR sensors in both public and private datasets. Our

framework demonstrates superior efficiency in comparison with other state-of-the-art

methods while maintaining comparable mapping accuracy and high memory efficiency.

We demonstrate two real-world applications of D-Map for real-time occupancy map-

ping on a handheld device and an aerial platform carrying a high-resolution LiDAR. In

addition, we open-source the implementation of D-Map on GitHub to benefit society:

github.com/hku-mars/D-Map.

4.1 Introduction

In recent years, advancements in light detection and ranging (LiDAR) sensors have

led to the commercialization of lightweight, low cost, and high accuracy 3D LiDARs,

raising tremendous popularity in various applications such as robotics [135, 190–192],

autonomous driving [160, 193, 194], 3D reconstruction [33, 78, 195], etc. Over the past

decade, a clear trend has emerged to develop 3D LiDARs with a smaller size, longer

detection range, and higher resolution, approaching image-level quality [22]. This trend

has not only opened up new possibilities for deploying LiDARs in diverse applications

but has also necessitated the development of new techniques to exploit the potential of

LiDAR-based applications.

Occupancy grid mapping provides an efficient means for autonomous systems to

navigate in unknown environments, which is crucial in a variety of applications such as

obstacle avoidance [133, 188], path planning [196, 197], and autonomous exploration [3,

12, 198]. When adapted to LiDARs with increasing performance, occupancy grid map-

ping is faced with additional challenges in efficiency, especially in the two core steps:

ray-casting and occupancy state updates.

Ray-casting is challenging because LiDARs provide increasingly dense depth mea-

surements (e.g., over one million points per second) with long ranges (e.g., over 300m).

Therefore, the number of rays to be processed increases with the number of points.

Secondly, the number of cells traversed by a single ray is affected by the sensor’s detec-

tion range, with LiDARs traversing dozens of times more cells than depth cameras with

https://github.com/hku-mars/D-Map
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smaller detection range (e.g., less than 5m). Consequently, the tremendous amount of

cells results in a costly computation load. Finally, the dense LiDAR measurements can

lead to redundant visits to the same cells in ray-casting, which can consume unnecessary

computation resources in the subsequent occupancy state updates.

The second challenge in LiDAR-based occupancy mapping arises from the need for

high-resolution occupancy maps to fully exploit the high accuracy of LiDAR sensors.

This challenge involves the selection of map structures to achieve high-resolution occu-

pancy mapping where a trade-off between computational and memory efficiency has to

be balanced. The two commonly used map structures are grid-based [199] and tree-

based [96]. Grid-based maps offer highly efficient updates in O(1) time complexity but

suffer from extensive memory consumption when applied in large-scale environments

or with high resolutions. Tree-based maps are more memory-efficient than grid-based

maps, but the trade-off is the higher computational complexity when updating the tree.

The update efficiency of a tree-based map structure is directly influenced by the tree

height, which is determined by both the mapping environment and map resolution.

In addition to the challenges mentioned above, some essential features of LiDAR

sensors have not yet been fully utilized in existing occupancy mapping approaches, such

as the low false alarm rate which provides high confidence in identifying free and occu-

pied space. The existing occupancy mapping approaches commonly utilize occupancy

probabilities to handle the false detection of depth measurements. Nevertheless, in

LiDAR-based occupancy mapping, the low false alarm rate (e.g., three out of a million

points [200]) offers an opportunity to enhance efficiency by directly eliminating known

space from the map without requiring any probability updates.

In this work, we present a novel mapping framework that effectively addresses the

aforementioned issues in LiDAR-based occupancy mapping. Our contributions can be

summarized as follows:

• We propose an occupancy state determination method based on depth image pro-

jection to alleviate the computation load in the traditional ray-casting technique.

This projection-based approach enables occupancy state determination of cells at

any size, allowing subsequent efficient updates in large-scale environments.
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• We present a novel on-tree update strategy for updating occupancy states based

on a hybrid map structure, providing a superior balance between computation and

memory efficiency. The hybrid map structure stores unknown space on an octree,

which enables a memory-efficient representation for the large unknown space, while

the occupied space is stored on a hashing grid map. In terms of efficiency, the

proposed strategy allows occupancy state determination of large cells on an octree,

thereby avoiding unnecessary updates on small cells and increasing efficiency.

• We leverage the low false alarm rate of LiDAR measurements to directly remove

cells with determined states (i.e., occupied or free) at each update. This approach

renders our map structure a decremental property, for which we term our frame-

work as D-Map, providing higher computational efficiency and less memory usage.

• We conduct an in-depth analysis of the accuracy of the proposed occupancy state

determination method and the time complexity of updates and queries in D-Map.

Specifically, we derive an analytical function to quantify the accuracy loss relative

to depth image resolution. The time complexity analysis of updates on D-Map pro-

vides theoretical support to our superior performance over state-of-the-art methods

that rely on ray-casting.

• We make the implementation of D-Map available on Github: github.com/hku-mar

s/D-Map to promote the reproducibility and further development of our work.

The remainder of this chapter is organized as follows. Section 4.2 provides an

overview of related works in the field of occupancy mapping. We then present the

complete mapping framework and the details of each key component in Sections 4.3,

4.4, and 4.5, respectively. Section 4.7 presents the benchmark experiments and ablation

studies conducted on open datasets. In Section 4.8, we demonstrate two real-world

experiments, followed by a discussion in Section 4.10. Finally, we conclude this article

in Section 4.11.

4.2 Related Works

In this section, we review the previous research on occupancy mapping and discuss

their update methods.

https://github.com/hku-mars/D-Map
https://github.com/hku-mars/D-Map
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4.2.1 Occupancy Mapping Approaches

We categorize the occupancy mapping approaches into two classes: continuous maps

and discrete maps, based on their assumptions of modeling the environments.

Continuous maps assume an implicit correlation of locality in space and model en-

vironments through continuous occupancy distribution. In the early years, Thrun et

al. introduced the concept of learning inverse sensor models to generate local occupancy

maps by means of sampling [95]. In more recent years, O’Callaghan et al. proposed using

Gaussian Process regression to learn a continuous representation of 2-dimensional envi-

ronments, which has since been extended to 3-dimensional environments using Gaussian

mixture models or sparse Gaussian processes to reduce computational load during train-

ing [101, 104, 201]. However, the time complexity of these methods is often prohibitive

for real-time applications, with a computational complexity of O(N3) in the number of

depth measurements N . Therefore, considerable efforts have been devoted to improving

the update efficiency of these methods [106, 109, 110, 114]. Unlike previous approaches

maintaining dense occupancy states, Duong et al. developed a sparse Bayesian formu-

lation for occupancy mapping using a sparse set of relevance vectors [202]. While the

aforementioned methods can be applied to LiDAR sensors, there is a substantial body of

research focused on learning-based occupancy mapping using image sequences, includ-

ing Occupancy Networks [203], Neural Radiance Fields (NeRF) [204], DeepSDF [205],

Semantic Mapping [17, 206], NICE-SLAM [207], among others.

As opposed to continuous maps, occupancy grid mapping approaches assume in-

dependent occupancy at different locations, resulting in a discrete representation of

environments using grids. Historically, a uniform grid map structure was imposed to dis-

cretize the environments and represents the occupancy probabilities independently [199,

208, 209]. However, this approach is impractical for generating high-resolution maps or

working in large-scale environments for its significant memory consumption. To address

this limitation, tree-based map structures such as quadtree [210] and octree [93] were

applied in occupancy grid mapping approaches with great effect. These structures recur-

sively divide space into equal subspaces for updates and merge subspaces with equivalent

states for a more compact representation [96, 211]. However, the updates on the tree-

based maps are much more expensive. A voxel hashing technique [117] has recently been
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adapted to occupancy mapping [13, 14]. Though alleviating the memory consumption

in uniform grids, the memory consumption remains prohibitive to high-resolution maps

and large-scale environments. The use of discrete representations of environments has

also been applied in Euclidean Signed Distance Field (ESDF), an alternative approach

to occupancy mapping [99, 100]. However, the construction of ESDF heavily relies

on ray-casting and encounters similar challenges to other existing occupancy mapping

techniques.

While the continuous mapping approaches provide dense occupancy maps that can

reason about measured and unmeasured areas, concerns remain about the reliability

of the inferred regions, particularly in safety-critical robotics applications. Besides,

continuous mapping approaches face significant challenges in real-time ability due to

the complicated training and querying process, as integration over non-trivial space is

required to update and query on a continuous map which necessitates timely numerical

evaluation. Compared with the continuous mapping approaches methods, occupancy

grid mapping is preferable in robotic applications with limited computation resources

because of its higher update efficiency resulting from less complex map representation.

Additionally, occupancy grid mapping is regarded as a more reliable technique, as it

updates the occupancy map solely based on actual depth measurements without any

inferences. Our D-Map is one kind of occupancy grid mapping approach. It achieves

higher computational efficiency than existing grid-based approaches while maintaining

comparable memory consumption with tree-based methods.

4.2.2 Update Methods

Regardless of different map representations, various research has been conducted to

improve the efficiency of map updating, most of which focuses on alleviating the com-

putation load of ray-casting. Wurm et al. present a hierarchical structure of octrees

with multiple resolutions, allowing not complete but adequate resolution in different

sub-maps depending on objects to reduce the computation load in ray-casting [120].

Similarly, [121] propose an adaptive resolution mapping method based on statistical

measurements. However, the resultant maps generated from this method are affected

by the parameters of adaptive resolution, which may differ from the original results. In

Octomap [96], a batch-based method is utilized to avoid redundant cells resulting from
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ray-casting, which effectively reduces the effort in subsequent tree updates. Besides,

a clamping policy is used in Octomap, initially proposed to handle dynamic environ-

ments [212], allowing the acceleration of map updates by pruning the octree. Duberg

et al. proposed two possible approaches to simplify the ray-casting process, including

downsampling point clouds to map resolution and ray marching with adaptive steps.

However, both of these approaches introduce accuracy loss and require handcraft pa-

rameters [122]. In contrast, motivated by the idea of coherent rays [213], Kwon et al.

combine rays traversing equivalent cells into a super ray to reduce the number of rays in

ray-casting [214] while maintaining full accuracy. Besides super rays, the number of cells

to be traversed is reduced by culling regions. However, these two techniques provide less

benefit at high resolution due to the ineffectiveness of merging rays into a super ray and

the inefficiency of culling region construction.

In comparison with the aforementioned update approaches, D-Map discards the

timely ray-casting for occupancy mapping. Alternatively, we design an occupancy state

determination method based on depth image projection. We develop an on-tree update

strategy for efficient map updates. This strategy determines the occupancy states of

cells at various resolutions by projecting cells to the depth image, which is more reliable

compared to the adaptive resolution mapping approach [121] that relies on handcraft

parameters. Moreover, unlike existing occupancy mapping methods, D-Map does not

require occupancy probability updates. Instead, we assume the environment is static and

directly remove known space (i.e., free and occupied) from the tree map by leveraging

the low false alarm rate of LiDAR sensors. This approach results in a decreasing size of

the map during the update process, thus further enhancing the efficiency of D-Map.

4.3 Overview

Figure 4.1 presents an overview of the proposed D-Map framework. The map struc-

ture delineated in the orange block is explained in Section 4.5.1. It consists of two parts:

the occupied map and the unknown map. The green block represents the pipeline of the

occupancy update strategy. At each update, a depth image is rasterized from the in-

coming point clouds at the sensor pose (see Section 4.4.1). Subsequently, a 2-D segment

tree is constructed on the depth image to enable efficient occupancy state determination
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Figure 4.1: The framework overview of D-Map. The blue block shows the input to
D-Map, including the point clouds and the corresponding sensor odometry. The orange
block is the occupancy map structure of D-Map, which is composed of a hashing grid
map for maintaining occupied space and an octree for maintaining unknown space. The
occupancy update strategy is presented in the green block, which extracts the cells inside
the sensing area on the octree and conducts operations depending on the occupancy state
determination method using a depth image.

(see Section 4.4.2 and Section 4.4.3). The entire procedure to update the unknown map

is described in Section 4.5.2 and summarized as follows. The cell extraction module

retracts the unknown cells on the octree from the largest to the smallest size, projects

them to the depth image, and determines their occupancy states. The cells determined

as known are directly removed from the map, while the unknown ones remain, and the

undetermined ones are split into smaller cells for further occupancy state determination.

This coarse-to-find process facilitates updates on large cells directly without queries

each small cell. Moreover, the removal of known cells endows our framework with a

decremental property, providing high efficiency in both computation and memory.

4.4 Occupancy State Determination on Depth Image

This section describes how to determine the occupancy states on a depth image

rasterized from incoming point clouds.

4.4.1 Depth Image Rasterization

In preparation for occupancy state determination, the point cloud captured by a

LiDAR sensor is rasterized into a depth image at the current sensor pose. To ensure the

accuracy of state determination, the depth image resolution should be sufficiently small

so that the projected area of a cell from the map to the depth image is larger than one
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pixel. As illustrated in Fig. 4.2, we determine the depth image resolution ψmap relative

to the map resolution d and LiDAR’s detection range R using the following equation:

ψmap = 2arcsin(
d

2R
) ≈ d

R
(4.1)

However, high-resolution maps would result in a high-resolution depth image of enor-

mous size, with many empty pixels due to the much smaller number of point clouds than

the size of the depth image. To address this issue, we bound the depth image resolution

by the LiDAR angular resolution, which is the minimum angle between two laser pulses

emitted and received in a rotating manner. Specifically, we define the standard depth

image resolution ψI as

ψI = max{ψmap, ψlidar} ≈ max{ d
R
, ψlidar} (4.2)

where ψlidar is the angular resolution of the LiDAR. Note that we do not distinguish

between the vertical and horizontal angular resolution for simplicity of definition. More-

over, we keep the minimum depth value when neighboring points are projected to the

same pixel.

Figure 4.2: This figure illustrates the spatial relationship among the map resolution
d, the detection range R, and the depth image resolution ψmap.

4.4.2 2-D Segment Tree

To determine the occupancy state of a cell in the map, a two-step process is em-

ployed, whereby the cell is first projected onto the depth image, followed by a comparison

of the projected depth against the minimum and maximum depth values of the corre-

sponding area. Since the projected area of a cell on the depth image varies with the cell
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Figure 4.3: This figure illustrates an example of a fast query of the minimum value in
the pixel range of [2, 7] on a 1-D segment tree. Starting from the root of the segment
tree, the range query searches along the tree recursively until the current node range is
completely covered by the queried range, where the minimum value of the node range
that has been saved on the node during the tree construction will be returned. In this
example, the range [2, 7] leads to four nodes representing the range of [2, 2], [3, 4], [5, 6],
and [7, 7], respectively. The minimum value of the range is efficiently obtained from
these four nodes instead of counting the six elements in the array.

location, a 2-D segment tree structure is employed to expedite efficient queries of the

minimum and maximum values on the depth image, as detailed below.

A segment tree is a perfectly balanced binary tree that efficiently provides range

queries by representing a set of intervals [215]. Figure 4.3 describes the process of

querying the minimum value by a 1-D segment tree. The segment tree is constructed by

recursively splitting the array in half until each node contains a single element. As each

node on the segment tree represents an interval of the array, the summarized information

of the values in the interval, such as the minimum and maximum, is preprocessed during

the construction procedure to accelerate the subsequent query. When querying, the

segment tree retrieves a minimal representation of the queried interval using a subset of

nodes (colored nodes in Fig. 4.3). The result is obtained by summarizing information

from the retrieved nodes with fewer operations than direct queries. The time complexity

of query on a 1-D segment tree is O(logN) where N is the number of elements in the

discrete array, while direct query leads to a time complexity of O(N).

The approach to extending a 1-Dimensional segment tree to a 2-Dimensional struc-

ture involves constructing a “segment tree of segment trees”, as proposed in [216]. The
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segment tree in the outer layer splits the 2-D array by row, and on each node of the

outer segment tree, a 1-D inner segment tree is constructed to maintain the column in-

formation on the covered rows. The query on a 2-D segment tree first searches the outer

tree for the nodes representing rows covered by the queried region and then traverses

the inner segment trees on the corresponding nodes to retrieve the covered columns.

Finally, the result over the queried region is summarized from the information stored on

retrieved nodes. The time complexity of a 2-D segment tree to query on a 2-D array of

size N ×M is O(logN logM), while direct queries lead to a time complexity of O(N2).

Given a depth image rasterized from point clouds, we build a 2-D segment tree to

maintain the minimum and maximum depth values on each tree node, denoted as dMin

and dMax, respectively. Additionally, we keep track of the number of pixels occupied by

point clouds within the covered area of each node, denoted as dSum.

4.4.3 Occupancy State Determination

Figure 4.4: This figure demonstrates an example of occupancy state determination on
five cells in the map. (a) The 3D view shows the relative position of the five cells with
respect to (w.r.t.) the LiDAR and the objects in the environment. (b) The top-down
view helps to understand the occlusion between the cells and the objects when seeing
from LiDAR. (c) The cells are projected to the depth image by their circumsphere
radius, after which the projected areas are queried for the depth values in the depth
image, which are finally used to determine the cells’ occupancy states.

We introduce the principle of our method for determining the occupancy state of a

cell using five cells as an example, depicted in Fig. 4.4 and numbered from 1 to 5. We

commence by classifying the cells based on whether they are completely located inside

the LiDAR’s sensing area. As illustrated in the top-down view in Fig. 4.4(b), Grid 1,

Grid 2, and Grid 3 are entirely located within the sensing area, while Grid 4 and Grid 5

only have part of them inside. Among the cells completely inside, Grid 3 is determined
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Algorithm 9: Occupancy State Determination
Params: Completeness threshold ε
Input : Grid Center C, Grid Size L, LiDAR Pose T,

2D Segment Tree T
Output: State S

1 Function DetermineOccupancy(T,C,L,T )
2 r, θ, ϕ← Projection(T,C);
3 BoxMin = r − L/2, BoxMax = r + L/2;
4 xL, xR, yL, yR←Coverage(r, θ, ϕ, L);
5 ProjPixels = (yR− yL+ 1)(xR− xL+ 1);
6 dMin, dMax, dSum← T .query(xL, xR, yL, yR);
7 α = dSum/ProjPixels;
8 if dSum == 0 then return(Unknown);
9 if α > ε then

10 if dMax<BoxMin then
11 S← Unknown;
12 else
13 if dMin>BoxMax then
14 S← Unknown;
15 else
16 S← Undetermined;
17 end
18 end
19 else
20 if dMax<BoxMin then
21 S← Unknown;
22 else
23 S← Undetermined;
24 end
25 end
26 return(S);
27 End Function
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Figure 4.5: The relative position between the cells and objects in the environments,
along the one-pixel direction of the depth image, is determined by comparing the depth
range of the cell (represented by the minimum depth BoxMin and maximum depth
BoxMax) with the depth range on the depth image (represented by the minimum depth
(dMin and maximum depth dMax). Grids 1-3 completely locate inside the LiDAR’s sens-
ing area, while Grids 4-5 are partially inside.

as known since it is situated in front of all objects in the observed environment; Grid 1 is

determined as unknown due to its location behind the objects. The occupancy state of

Grid 2 remains undetermined since part of it lies in front of the objects while the other

part lies behind. Regarding the cells with part of them inside the sensing area, Grid 5 is

determined as unknown because it is located behind the objects. Though lying in front

of the object, the occupancy state of Grid 4 remains undetermined owing to its location

not completely inside.

Following the principles above, D-Map projects the cells that are either inside or

intersected with the LiDAR’s sensing area onto the current depth image rasterized from

recent point clouds which represent the objects in the environment. The relative location

between the cells and the objects is determined by comparing their depth values. The

procedure of occupancy state determination on the depth image is described in Alg. 9

and explained below.

In consideration of consistency and computational efficiency, we project a cell to

the depth image by its inscribed circle, as shown in Fig. 4.4 (b) and (c). The cell center,

denoted as C, is first transformed into a spherical coordinate as (r, θ, ϕ) (Line 2). The

depth range covered by the cell is described as its minimum depth BoxMin and maximum
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depth BoxMax with respect to its center C and cell size L (Line 3). The boundary of the

projected area on the depth image (i.e., queried pixels in Fig. 4.4(c)) is obtained as

follows

xL = ⌊
θ − arcsin( L

2r )

ψI
⌋, xR = ⌈

θ + arcsin( L
2r )

ψI
⌉

yL = ⌊
ϕ− arcsin( L

2r )

ψI
⌋, yR = ⌈

ϕ+ arcsin( L
2r )

ψI
⌉

(4.3)

Then, we prepare the following information for determining the occupancy states of

the cell. Firstly, the number of queried pixels covered by the projected area is counted

in ProjPixels (Line 5). Secondly, the number of occupied pixels dSum, minimum depth

dMin, and maximum depth dMax within the projected area is provided by querying the 2-

D segment tree as described in Section 4.4.2 (Line 6). Thirdly, we define the observation

completeness α of a cell to determine whether a cell is completely observed by the current

depth image, which is calculated by dividing the number of occupied pixels dSum over

the number of queried pixels ProjPixels on the depth image (Line 7). The computed

α quantifies if the cell’s projected area has been sufficiently observed by points in the

current depth image. A large α indicates that a major part of the cell lies inside the

sensing area, with most of the pixels in its projected area on the depth image actively

occupied by LiDAR points. Only cells with large α have their occupancy state updated.

The occupancy state of a cell is acquired by comparing the depth range of the depth

image (represented by the minimum depth dMin and maximum depth dMax) against the

depth range of the cell (represented by minimum depth BoxMin and maximum depth

BoxMax), as shown in Fig. 4.5 and detailed below. We first categorize the cells by com-

paring the observation completeness α with a completeness threshold ε. For completely

observed cells (i.e., α > ε in Line 9), the occupancy state is determined as unknown if

dMax of the depth image is smaller than BoxMin of the cell (Line 10∼12). This condi-

tion indicates that the cell is located behind the object in the environment, as shown

in Fig. 4.5(a). When dMin of the depth image is greater than BoxMax of the cell, the

occupancy state of the cell is determined as known (Line 13∼15), indicating that it is

located in front of the objects as shown in Fig. 4.5(b). Otherwise, the occupancy state of

the cell cannot be determined, as shown in Fig. 4.5(c). For cells that are not completely

observed (i.e., α ⩽ ε), the occupancy state is determined as unknown if dMax of the

depth image is less than BoxMin of the cell (Line 20∼22), indicating that the cell lies
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behind the objects as shown in Fig.4.5(d). If this condition is not met, the occupancy

state of the cell is considered undetermined due to incomplete observation (Line 22∼24),

as shown in Fig. 4.5(e).

Figure 4.6: A special case when the pixel size is larger than the projected area of a
cell. This happens when the depth image resolution is computed from LiDAR’s angular
resolution.

In some situations, the projected area of a cell may be smaller than the one-pixel

area on the depth image, as shown in Fig. 4.6. This occurs when the depth image

resolution ψI is computed from the LiDAR’s angular resolution, as defined by (4.2).

These cases are referred to as “single pixel cases”. In such cases, recalling that a pixel only

saves one LiDAR point with the smallest depth as presented in Section 4.4.1, we should

further determine whether the LiDAR point actually traverses the cell by examining

if the point lies within the cell’s projected area. If the LiDAR point lies outside the

projected area, the occupancy state of the cell remains unknown. Otherwise, we use a

similar logic to Alg. 9 to determine the occupancy state.

4.4.4 Depth Image Resolution Analysis

The resolution of a depth image is a critical parameter that plays a crucial role in

balancing the accuracy and efficiency of occupancy state determination. A low-resolution

depth image is more convenient to query but at the cost of increased information loss

from the original point clouds. Conversely, a high-resolution depth image provides bet-

ter accuracy but requires a larger computational effort, leading to reduced efficiency.

When considering a depth image MI with a standard resolution of ψI determined by

(4.2), it is possible to relax the resolution to ψ = γψI by a relaxed factor γ to achieve
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higher efficiency while sacrificing some accuracy. To evaluate the accuracy loss with

the resolution relaxation factor γ, we derive a function f(γ) that describes the retained

accuracy from the original depth image MI as a function of the factor γ.

We assume a LiDAR is employed to scan a large-scale open environment free of

obstacles at a static pose. When determining the free space by projecting to the depth

imageMI with the standard resolution of ψI , the resultant occupancy map should show

complete free space in a 3D spherical domain, the volume of which is denoted as VI .

However, when relaxing the depth image resolution to ψ = γψI for a relaxed depth

imageM, some free space is falsely determined as unknown when projecting toM due

to the single pixel cases explained in Section 4.4.3. We denote the volume of this case

as V . An illustration of VI and V is presented in Figure 4.7. The accuracy function

f(γ) is defined as the ratio of space correctly determined as free:

f(γ) =
V

VI
(4.4)

We made the following assumption to ease the theoretical analysis:

Assumption 1. We assume that the LiDAR is an idealized representation, which as-

sumes a horizontal FoV of 360° and a symmetric vertical FoV in the range of [−α, α]

with infinitely small angular resolution (e.g., ψlidar → 0) and a detection range R. The

occupancy mapping resolution is d.

Theorem 1. The function f(γ) is derived based on Assumption 1 as follows:

f(γ) =


γ3
0

γ +A(1− γ0

γ ) 1
γ2 γ > γ0

1 0 < γ ⩽ γ0

(4.5)

where A and γ0 are constant factors given by

A =
3(1− cos(α)) + 12

π sin(α)

1− 1
2 (sin(α) cos

2(α) + (1− sin(α))2(2 + sin(α)))
(4.6a)

γ0 =
√
3 sin(min{atan( 1√

2
) + α,

π

2
}). (4.6b)
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Figure 4.7: (a) Free space VI determined by projecting toMI with a resolution of ψI .
(b) Free space V determined by projecting toM with a resolution of ψ = γψI , which is
composed of Vcenter and Vray.

Figure 4.8: When casting rays from the sensor origin O to the LiDAR points on two
neighbor pixels, there exist points A and B on the rays that the length of AB is large
enough to contain a grid of size d. In this case, the length AB equals the diagonal of
the grid, which is

√
3d, and the calculation of OB is conducted on plane AOB. The

length of OB is the center radius r.

Proof. The volume of free space V is composed of two parts: center free space Vcenter

and free space of rays Vray, as shown in Fig. 4.7. The radius r of the center sphere is

obtained in consideration of vertical FoV Φ ∈ [−α, α] as follows:

r =

√
3 sin(min{atan(1/

√
2) + α, π2 })R

γ
(4.7)

An illustration to calculate the radius r is presented in Fig. 4.8. Let γ0 =
√
3 sin(min

{atan( 1√
2
) + α, π2 }), then r = γ0R

γ . The volume of center space Vcenter can be obtained

in proportion to the entire free space VI as

Vcenter = (
r

R
)3VI = (

γ0
γ
)3VI (4.8)
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Since the volume of center space Vcenter is always smaller than the entire free space,

γ0/γ should be smaller than 1, leading to γ > γ0. Otherwise, we have:

f(γ) = 1.0, 0 < γ ⩽ γ0 (4.9)

For the volume of free space of rays Vray, we consider the points P = {pi,j |i =

1, . . . , N, j = 1, . . . ,Mray} on the depth image M where N and M are the sizes of two

dimension of the depth image. For each point pi,j , the number of grids traversed by a

ray from the origin to the point is the same as counting the grids intersected with the

diagonal of a cuboid C as:

Ngrid =a+ b+ c− gcd(a, b)

− gcd(b, c)− gcd(a, c) + gcd(a, b, c)

(4.10)

where a, b, c are the three dimensions of the cuboid. Suppose the point pi,j is projected

to the depth image M with the spherical angle of (ϕi, θj), the size of the equivalent

cuboid C is
a =

R− r
d

cos(ϕi) cos(θi), b =
R− r
d

cos(ϕi) sin(θi)

c =
R− r
d

sin(ϕi)

(4.11)

Thus, the number of grids traversed by a ray from the origin to a point pi,j is obtained

by approximation of (4.10) as:

Ngrid,i,j =
(R− r)

d

(
c(ϕi)(c(θj) + s(θj)) + s(ϕi)

)
(4.12)

where c(·) and s(·) denote cos(·) and sin(·), respectively. As the volume of each grid is

d3, the total volume of these grids is derived as

Vray,i,j = (1− γ0
γ
)
(
c(ϕi)(c(θj) + s(θj)) + s(ϕi)

)
Rd2 (4.13)

When summing the volume of free space traversed by each ray, we consider 1/8 of

the points P for simplicity, which locates in an octant of free space V corresponding

to the FoV angle of [0, π/2] × [0, α]. The depth image dimension corresponding to the
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octant space is calculated as:

N ≈ α

γψI
, M ≈ π

2γψI
(4.14)

The spherical coordinate (ϕi, θj) of pi,j can be obtained from the depth image resolution

ψ as follows:

ϕi = iγψI , θj = jγψI (4.15)

Summarizing the volume of free space covered by the rays from the origin to the point

cloud P yields:

Vray = 8

N−1∑
i=0

M−1∑
j=0

Vray,i,j

= (4π(1− cos(α)) + 16 sin(α))(1− γ0
γ
)
R3

γ2

(4.16)

The volume of free space VI is equivalent to the volume of LiDAR FoV, which can be

obtained by the volume of a sphere cut by two sphere caps and two cones, which is

VI =
4πR3

3
− 2 · πR

3

3
sin(α) cos2(α)

− 2 · π(R−R sin(α))2(R− R−R sin(α)

3
)

=
4πR3

3
− 2πR3

3
sin(α) cos2(α)

− 2πR3

3
(1− sin(α))2(2 + sin(α))

(4.17)

Finally, the accuracy function for the 3-Dimensional case is

f(γ) =
Vcenter + Vray

VI

= (
γ0
γ
)3 +

Vray

VI

= (
γ0
γ
)3 +A(1− γ0

γ
)
1

γ2
, γ > γ0

(4.18)

where A is a constant factor relative to LiDAR’s vertical FoV range α

A =
3(1− c(α)) + 12

π s(α)

1− 1
2 (s(α)c

2(α) + (1− s(α))2(2 + s(α)))
(4.19)
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Summarizing (4.9) and (4.18), the accuracy function f(γ) is provided as

f(γ) =


γ3
0

γ +A(1− γ0

γ ) 1
γ2 γ > γ0

1 0 < γ ⩽ γ0

(4.20)

According to Theorem 1, the relaxed factor γ can be determined by an expected

accuracy value ω ∈ (0, 1] using the trigonometric form of Cardano’s Formula [217], given

as:

γ =


2
√

A
3ω cos(β) 0 < ω < 1

1 ω = 1

(4.21)

where β is given as

β =
1

3
arccos

(
− Aγ0 − γ30

2ω
(
A

3ω
)

3
2

)
(4.22)

It is worth noting that for α ∈ [0, π/2], γ0 always satisfies γ0 ⩾ 1. Therefore, setting

γ = 1 always results in f(γ) = 1, regardless of the value of α. Besides, it is noted the

accuracy function f(γ) attains a value of 1 for γ ∈ (0, γ0], as shown in equation (4.5).

Therefore, in equation (4.21), we select γ = 1 as the solution for ω = 1.

Figure 4.9: The simulation results for validation on accuracy function f(γ).

The accuracy function f(γ) is validated through a series of simulation experiments

involving various LiDAR detection ranges and map resolutions. Specifically, given a

detection range R and map resolution d, a batch of point clouds covering the free space

within the detection range is generated on a sphere of radius R. To compute the volume

VI , we count the number of cells in the map with resolution d that are identified as

free by projecting the map to the original depth image MI and multiplying the result
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by the unit volume d3. Similarly, we obtain the volume V by projecting the map onto

the relaxed depth image M. The accuracy function value f(γ) is calculated using the

definition in (4.4). In the simulations, we set the LiDAR’s FoV Φ to [−15°, 15°].

The results of the simulation experiments are presented in Fig. 4.9. The theoretical

model fits the experimental curves well. However, slight errors arise when γ approaches

γ0 due to discretization in counting the number of cells to evaluate the volume of covered

regions. These errors are evident in the curves of low resolution and short detection range

(e.g., in the setup of R = 10m and d = 0.5m, which is the green solid line in Fig. 4.9).

4.5 Occupancy Mapping

In this section, we describe how to update and query the occupancy states using

the map structure in D-Map.

4.5.1 Occupancy Map Structure

With an aim to optimize the balance between computation and memory efficiency,

D-Map utilizes a hybrid map structure that leverages a hashing grid map to manage

occupied space and an octree to handle unknown space.

4.5.1.1 Hashing Grid Map

As there are typically fewer occupied regions in the environment than free and

unknown ones, we maintain the occupied space of the environment in a hashing grid

map using the voxel hashing technique [117], which allows efficient update and query

operations in a time complexity of O(1). The hash key value for a given point p = [x, y, z]

is computed by a hashing function Hash, defined as follows:

Hash(p) = (P2nz + Pny + nx) mod Q

nx = ⌊x
d
⌋, ny = ⌊y

d
⌋, nz = ⌊z

d
⌋,

(4.23)

where d represents the resolution of the hashing grid map. P and Q are large prime num-

bers while Q also serves as the size of the hashing table. mod is the modulus calculation

between two integers. The value of P and Q are carefully selected to minimize conflict

probability [218], with P and Q set to 116101 and 201326611 in our work, respectively.
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4.5.1.2 Octree

The tree-based map structure is a commonly used approach for occupancy mapping

due to its high memory efficiency. Among various tree-based data structures, the octree

[174] stands out as it outperforms other spatial data structures for dynamic updates

[219]. Additionally, the spatial division on the octree naturally allows for determining

the occupancy states of large cells during tree updates. Therefore, we utilize an octree

to organize the unknown space.

In D-Map, a node on the octree contains the following elements:

• The point array ChildNodes[8] contains the address to its eight child nodes. The

point array is empty if the node is a leaf node.

• The center C of the cell represented by the node.

• The size L of the cell represented by the node.

4.5.1.3 Initialization

To initialize the mapping procedure in D-Map, the occupancy states of the envi-

ronment are considered to be entirely unknown. In the implementation, given an initial

bounding box Cbbx of the interested regions, the root node of the octree is initialized to

represent an unknown cube Croot whose the center C is allocated at the center of Cbbx.

The size L of the root node is assigned as the longest side length of the bounding box

Cbbx, and the point array ChildNodes for child nodes is initialized as empty. Besides, the

hash table in the hashing grid map is initialized as an empty table. Notably, the initial

bounding box does not restrict the mapping area, as both the octree and the hashing

grid map allow for the growth of the mapping space on-the-fly [117, 122].

4.5.2 Occupancy Update

The occupancy updates in D-Map involve updating the hashing grid map and the

octree, as described in Alg. 10. The point clouds are directly inserted into the hashing

grid map using the hash function in (4.23) (Line 2) and rasterized into a depth imageM

(Line 3). A 2-D segment tree is constructed from the depth imageM for the subsequent

occupancy state determination as described in Section 4.4 (Line 4). The sensing area
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Algorithm 10: Occupancy Update
Params: Map Resolution d, Initial Grid Size E,

LiDAR Detection Range R,
LiDAR FoV Φ and Θ

Input : Sensor Pose T, Point Cloud P
1 Algorithm Start
2 UpdateGridMap(P);
3 M←Rasterization(P);
4 T ←Build2DSegTree(M);
5 V ←SensingArea(T,R,Φ,Θ);
6 UpdateOctree(RootNode,T,V,T );
7 Algorithm End
8 Function UpdateOctree(Node,T,V,T )
9 L,C←GetCenterAndSize(Node);

10 if ! Intersected(T,C,V) then return;
11 if L > E then
12 S← Undetermined;
13 else
14 S←DetermineOccupancy(T,C,L,T );
15 end
16 switch S do
17 case Unknown do
18 return;
19 end
20 case Known do
21 DeleteNode(Node);
22 end
23 case Undetermined do
24 if L ⩽ d then
25 DeleteNode(Node)
26 else
27 if IsLeaf(Node) then Split(Node);
28 foreach Child in ChildNodes do
29 UpdateOctree(Child,T,V);
30 end
31 end
32 end
33 end
34 End Function
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V for cell extraction is obtained from the sensor pose T, LiDAR detection range R and

LiDAR FoV Φ × Θ (Line 5). D-Map employs an on-tree update strategy to update

the occupancy states of octree nodes within the LiDAR sensing area V using a function

named UpdateOctree (Line 6).

The function UpdateOctree is described in Lines 9∼33 and explained as follows.

Starting from the root node of the octree, the corresponding cell center C and its size

L are obtained (Line 9). The algorithm checks if the corresponding cell intersects with

LiDAR sensing area V, terminating further updates if there is no intersection (Line 10).

To avoid meaningless occupancy state determination on a too-large cell that always

returns undetermined, we directly split those cells larger than an initial cell size E for

efficiency (Line 11∼13). Otherwise, the occupancy state S is determined by Alg. 9 (Line

14). The operation on the tree node is decided based on the occupancy state S: If the cell

is determined as unknown, the node is kept on the tree, and no further operations are

required (Line 17∼19). The node is removed from the tree if the cell is known (i.e., free

or occupied) (Line 20∼22). If the occupancy state of the node cannot be determined,

further updates are required (Line 23∼32). A special condition is considered when the

cell size L achieves the map resolution d (Line 24∼26). In this case, at least one pixel

with a depth no smaller than the cell’s minimum depth BoxMin exists (otherwise, it is

determined as unknown for dMax < BoxMin, see Alg. 9). As a result, the cell can be

determined as known since it must have been either hit or traversed by the corresponding

point cloud on that pixel. Otherwise, if the cell size is greater than the map resolution,

we split the node, if not have done so (Line 27), and performed updates on its eight

children (Line 28∼30).

The recursive function UpdateOctree operates in a manner that visits cells from

the largest to the smallest size. This approach allows the determination of occupancy

states directly on large cells (if they are unknown or free), thus avoiding unnecessary

updates on smaller cells. As a result, occupancy updates on the octree are performed

concurrently with the tree traversal, resulting in a so-called “on-tree” update strategy.

This strategy is distinct from the classical pipeline [96, 214], which updates cells at the

constant map resolution d after ray-casting. Furthermore, D-Map continuously removes

known cells from the environment’s unknown space, making it a decremental mapping

method. This property enhances the efficiency as the mapping process progresses.
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4.5.3 Occupancy State Query

Since two data structures are used in D-Map, two steps are performed to obtain the

occupancy state of a cell at map resolution. Firstly, the cell is determined as unknown

if its corresponding node exists on the octree. Otherwise, the region is determined

as known. Subsequently, the hashing grid map is queried to determine whether it is

occupied. If not, the region is determined as free.

4.6 Time Complexity Analysis

Figure 4.10: A 2-D illustration of the worst-case occupancy updates for (a) D-Map and
(b) ray-casting-based methods. In the worst-case scenario for D-Map, two neighboring
points appear at the minimum and maximum distance to the sensor origin, resulting in
a serrated-shaped point cloud. In contrast, the worst-case scenario for ray-casting-based
methods results in a spherical-shaped point cloud located at the maximum distance to
the sensor origin.

In this section, we analyze the time complexity of updating and querying the occu-

pancy states on D-Map. To facilitate further analysis of the benchmark experiments in

Section 4.7, we additionally provide a time complexity analysis of the classical occupancy

update pipeline, which involves ray-casting prior to map updates.

4.6.1 Occupancy State Update

The occupancy state updates in D-Map are composed of two parts: updating oc-

cupied cells on the hashing grid map and updating unknown cells on the octree. The

time complexity for occupancy updates is mainly due to the on-tree update in the oc-

tree data structure, as the time of maintaining occupied points in a hashing grid map is

constant at O(1). The on-tree update strategy involves searching for nodes within the

LiDAR sensing area on the octree and determining their occupancy states. To analyze
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the time complexity, we first consider the number of nodes to be visited on the octree,

as presented in the following lemma:

Lemma 3. Suppose the maximum side length of environment bounding box Cbbx on the

octree is D, and map resolution is d. The number of nodes to be visited SDMap on the

octree for the on-tree update strategy in D-Map is bounded as:

SDMap = O
(
n
R

d
log (

D

d
)
)

(4.24)

where n is the number of points projected to the depth image, and R is the detection

range of the LiDAR sensor.

Proof. The on-tree update strategy searches the nodes inside or intersecting with the

sensing area. To analyze the time complexity, we examine the worst-case scenario for

updating the D-Map, which occurs when the octree splits the sensing area into the

smallest size. This situation can arise when the point cloud has a serrated shape (as

shown in Fig. 4.10(a)), leading to a depth image resembling a checkerboard where there

are abrupt changes in depth values from a minimum to a maximum between neighboring

pixels. In such situations, the number of leaf nodes visited in the D-Map is equivalent

to the number of grids traversed by rays of points on the depth image. For each ray,

the number of traversed grids is approximated as O(R/d), as derived in Section 4.4.4,

(4.10) and (4.12). Thus, the total number of leaf nodes in the worst case is given as:

Sleaf = O
(nR
d

)
(4.25)

Next, we consider the other nodes visited along the path toward the leaf nodes. The

number of these accompanying nodes Sacc is determined by the height of the octree,

which is log(D/d), as follows:

Sacc = O
(nR
d

log (
D

d
)
)

(4.26)
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Therefore, the total number of visited nodes in the worst case of our on-tree update

strategy is obtained as

SDMap = Sleaf + Sacc

= O
(nR
d

)
+O

(nR
d

log (
D

d
)
)

= O
(nR
d

log (
D

d
)
) (4.27)

Then we derive the time complexity of occupancy state determination (see Alg. 9)

that is frequently used in the update process.

Lemma 4. The time complexity of occupancy state determination is O(log(ΦI/ψI)

log(ΘI/ψI)), where ΦI and ΘI are the FoV angles of the depth image and ψI is the

depth image resolution.

Proof. When considering the procedure of occupancy state determination, the time com-

plexity is dominated by the range query on the 2-D segment tree. As explained in Sec-

tion 4.4.2, the time complexity of a range query on a 2-D segment tree is O(logN logM)

where N and M are the sizes of two dimensions. In our case, the 2-D segment tree is

constructed from a depth image, with N = ⌈ΦI/ψI⌉ and M = ⌈ΘI/ψI⌉. Thus, the time

complexity of occupancy state determination is O(log(ΦI/ψI) log(ΘI/ψI)).

Finally, the time complexity for occupancy updates on D-Map is given as follows:

Theorem 2. The time complexity of occupancy updates in D-Map is O
(
nR
d log (Dd )

)
,

where n is the number of points projected to the depth image, d is the map resolution,

and R is the LiDAR detection range.

Proof. In the on-tree update strategy, an occupancy state determination process is ap-

plied to each node that is visited. The time complexity of this process is given by

Lemma 4. Additionally, the number of visited nodes is given by SDMap in Lemma 3.

Thus, the overall time complexity can be expressed as the product of these two factors:

O
(nR
d

log(
D

d
) log(

ΦI

ψI
) log(

ΘI

ψI
)
)

(4.28)
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In D-Map, the depth image resolution is bounded by (4.2) as:

ψI = max{ d
R
, ψlidar} ⩾ ψlidar (4.29)

Therefore, the time complexity in (4.28) can be written as:

O
(nR
d

log(
D

d
) log(

ΦI

ψlidar

) log(
ΘI

ψlidar

)
)

(4.30)

Considering that ΦI and ΘI are bounded by constants (e.g., π) and ψlidar is a constant

parameter related to the LiDAR sensor, the time complexity can be further simplified

as O
(
nR
d log (Dd )

)
.

We provide the time complexity of the occupancy updates on a grid-based map and

an octree-based map as follows:

Theorem 3. The time complexity to update the occupancy states on a grid-based map

is O(nRd ) and on an octree-based map is O(nRd log(Dd )).

Proof. The occupancy updates involve ray casting to determine the grids intersected

with the rays, followed by updating their occupancy states on the map. We start by

considering the worst-case scenario where all points are at the detection range R (as

shown in Fig. 4.10(b)). In such cases, the number of grids traversed by rays can be

approximated as Src = O(nRd ), as derived in Section 4.4.4, (4.10) and (4.12). The time

complexity of map updates is O(1) for a grid-based map and O(log(D/d)) for an octree-

based map. Therefore, the time complexity for occupancy updates on a grid-based map

and an octree-based map is O(nRd ) and O(nRd log(Dd )), respectively.

Remark 1. Although D-Map and the octree-based map have the same time complexity

of O(nRd log(Dd )), their sources of time complexity are entirely different. Since D-Map

updates the occupancy states concurrently with the tree traversal, as discussed in Sec-

tion 4.5.2, the time complexity of D-Map depends solely on the number of visited nodes

SDMap during the on-tree update process, which contributes to O(nRd log(Dd )) directly. In

contrast, occupancy updates on an octree-based map consist of two consecutive proce-

dures: ray-casting, which contributes to O(nRd ), and map updates, which contribute to

O(log(D/d)), resulting in the same total time complexity of O(nRd log(Dd )).
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Remark 2. The time complexity of D-Map is calculated without considering the re-

moval of known cells, which could reduce the number of visited nodes SDMap substantially.

In contrast, existing ray-casting-based methods (either grid-based map or octree-based

map) do not have such decremental properties.

Remark 3. We derive the time complexity of occupancy updates for our D-Map and

ray-casting-based methods (i.e., the grid-based and octree-based maps) based on their

respective worst-case scenario, as illustrated in Fig. 4.10. However, the occurring chances

of their worst-case scenarios are different. Generally speaking, the worst-case scenario

for ray-casting-based methods is more likely to occur in the real world (e.g., large open

space) than for our D-Map.

4.6.2 Occupancy State Query

The time complexity of the occupancy state query in D-Map is provided as follows:

Theorem 4. The time complexity of querying the occupancy state of a cell in D-Map

is O(log(D/d)).

Proof. The query process in D-Map contains a query on the octree and a query on

the hashing grid map whose time complexity is O(log(D/d)) and O(1), respectively.

Therefore, the time complexity of the occupancy state query is easily obtained as

O(log(D/d)).

4.7 Benchmark Results

In this section, exhaustive benchmark experiments are conducted on various datasets

with different LiDARs to evaluate the computational efficiency, accuracy, and memory

consumption against other state-of-the-art occupancy mapping approaches. Besides the

time performance evaluation, we conduct an ablation study based on the time complexity

to provide deeper insight into the efficiency of our approach.
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Table 4.1: Details of Datasets for Benchmark Experiment

Mapped Area Number of Average Point Number
(m3) Scans (per scan)

FR_079 48× 37× 5 66 89445.9
Freiburg 293× 168× 29 81 247817.1
Workshop 40× 40× 8 7340 23540.8

MainBuilding 636× 251× 26 1402 22124.9
Kitti_04 551× 160× 37 271 125265.2
Kitti_06 616× 181× 47 1101 122189.4
Kitti_07 362× 347× 40 1101 121225.5

4.7.1 Datasets

The experiments are conducted on three open datasets and one private dataset.

The first public dataset is Kitti dataset which captured depth measurements by a Velo-

dyne HDL-64E rotating 3D laser scanner at 10Hz [220]. Considering the tremendous

memory consumption associated with grid-based maps that will be utilized in our bench-

mark experiments, we chose sequences Kitti_04, Kitti_06, and Kitti_07 to conduct the

benchmark evaluation. The second public dataset is an outdoor sequence MainBuilding

provided in FAST-LIO [130], which used a semi-solid state 3D LiDAR sensor Livox Avia

to collect data at 10Hz. The third public dataset, provided in the work Octomap [96],

includes an indoor sequence FR-079 and an outdoor sequence Freiburg. In addition, we

evaluate the benefit of decremental property on a private dataset Workshop, where a clut-

tered indoor environment is completely scanned manually using 3D LiDAR Livox Avia at

10Hz. The reconstruction result of Workshop dataset is available in [221]. It is noticed

that the odometry estimation for occupancy mapping in sequence Workshop and Main-

Building was acquired by our LiDAR-inertial odometry framework FAST-LIO2 [219].

Table 4.1 provides further details on the aforementioned datasets.

4.7.2 Evaluation Setup

We compared D-Map with state-of-the-art occupancy mapping methods commonly

used in robotics applications, including a grid-based method (Grid Map updated by

3DDDA [222]), a tree-based method (Octomap [96]), and the extended versions of Grid

Map and Octomap using super rays and culling regions [214] (denoted with “SR&CR(Grid)”
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and “SR&CR(Octo)”). These occupancy mapping methods were selected for their effi-

cient updates and widespread usage in the field. For the Octomap, SR&CR(Grid), and

SR&CR(Octo), we used their open-source implementations available on GitHub reposi-

tories12. For the grid map, we modify the open-source SR&CR(Grid) by disabling the

super rays and culling regions and termed it as “GridMap”. It is noticed that all grid-

based maps employed voxel hashing to achieve better memory efficiency. The benchmark

experiments are conducted at various map resolutions, ranging from a rough resolution

of 1.0m to a finer resolution of 1 cm for indoor sequences. Due to system memory

limitations, the minimum map resolution for outdoor sequences is set to 5 cm.

The computation platform for evaluation is an Intel NUC computer with CPU

Intel i7-10710U and 64GB RAM. To facilitate evaluation on high-resolution maps in

large-scale environments, a 64GB swap space on Solid State Drive (SSD) is allocated to

account for extensive memory usage.

D-Map uses a fixed set of parameters for all benchmark experiments. The com-

pleteness threshold ε in Alg. 9 is set to 0.8, while the initial cell size E in Alg. 10 is set

to 5.0m. The depth image resolution is determined using (4.2) without relaxation (i.e.,

γ = 1, which is not greater than γ0 and leads to f(γ) = 1, as explained in Section 4.4.4).

The LiDAR detection range R and LiDAR angular resolution ψlidar are acquired from

LiDARs’ manual sheets, except for Workshop indoor sequence whose detection range is

assigned as 60m in consideration of the indoor environment.

Given the high accuracy and low false alarm rate of LiDAR sensors, the space

that is hit by a LiDAR pulse can be reliably considered occupied, and that passed by

the laser ray can be considered free. We use the following parameter setup for other

occupancy mapping approaches in the benchmark experiment to ensure consistency

with this assumption that our D-Map has utilized. We set the probabilities for hit and

miss by a ray (i.e., for occupied and free space) to Pocc = 0.9999 and Pfree = 0.4999,

respectively, and the minimum and maximum clamping probabilities to Pmin = 0.499

and Pmax = 0.9999. Moreover, we set the initial occupancy probabilities of all cells to

0.5, which represents unknown cells without any update (or observation) from LiDAR

points, and we regard the cells with occupancy probability values smaller than 0.5 (due to
1https://github.com/OctoMap/octomap
2https://github.com/PinocchioYS/SuperRay
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subsequent LiDAR points update) as free and those with occupancy probability values

larger than 0.5 as occupied. Finally, the methods SR&CR(Grid) and SR&CR(Octo)

both require a threshold parameter k for the minimum number to generate super rays,

which is set to the default value k = 20 as in [214].

4.7.3 Efficiency Evaluation and Analysis

4.7.3.1 Benchmark Results

We summarize the average update time of each occupancy mapping approach and

report the results in Table 4.2. The update time for SR&CR(Grid) and SR&CR(Octo)

includes the time required for preprocessing, which involves generating super rays and

constructing culling regions, as well as the time for occupancy updates involving ray-

casting and map updates. In contrast, for GridMap and Octomap, only the time for

ray-casting and map updates is considered, as no preprocessing is required. As for our

D-Map, we count the preprocessing time for depth image rasterization and 2-D seg-

ment tree construction as well as the occupancy update time for updating the octree

and hashing grid map. As presented in Table 4.2, our D-Map consistently outperforms

the other mapping approaches across various map resolutions in three sequences of the

Kitti dataset. Particularly, at a map resolution of 5 cm in Kitti_06, D-Map achieves a

remarkable speedup of 7.66 times and 4.78 times faster than GridMap and Octomap, re-

spectively. However, in the MainBuilding datasets, GridMap shows the highest efficiency

at different map resolutions, followed by our D-Map and SR&CR(Grid). The lower ef-

ficiency of D-Map is caused by the sparse clouds in MainBuilding sequence, which only

has an average number of 22 k per scan, while Kitti datasets have over 120 k points per

scan on average. This finding suggests that our method is less efficient in updating sparse

point clouds since a sparse depth image rasterized from the sparse point clouds causes

redundant occupancy state queries on those unobserved regions during the updating

process. In contrast, ray-casting-based mapping approaches exhibit better performance

due to their precise traversal of observed regions. However, this disadvantage of D-Map

could be compensated by the decremental property as shown in the Workshop indoor

sequence, where the scanning process frequently visited the previously explored areas

with an aim to map the entire indoor environment exhaustively. This scanning process,

which is often used in mapping applications, enables our D-Map to continuously remove
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known space from the octree map, achieving higher efficiency than the other methods.

Fig. 4.11 presents the update time consumption of different occupancy approaches at

a 1 cm map resolution, clearly illustrating the decreasing update time of D-Map as the

environment is explored.
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Figure 4.11: Update time in Workshop indoor sequence at a high map resolution of
1 cm.

D-Map demonstrates superior performance compared to other approaches at high

map resolutions (d ⩽ 0.25m) in the indoor sequence FR_079, as well as at various

resolutions in the outdoor sequence Freiburg. However, at low resolutions (d ⩾ 0.5m)

in FR_079 sequence, the performance is limited by the preprocessing time required

for depth image rasterization (approximately 5.7ms) and the processing time to insert

occupied points into the hashing grid map (about 4.2ms).

Across all benchmark experiments conducted in this study, we have observed that

SR&CR(Grid) and SR&CR(Octo) exhibit low efficiency at high resolution compared to

GridMap and Octomap, respectively, without super rays or culling regions. This phe-

nomenon has been previously noted and discussed in [214], where it is attributed to the

low grouping ratio of super rays and the need for the timely rebuilding of culling regions

at high resolution. Additionally, we have also observed anomalous time performances

when comparing the grid-based method (i.e., GridMap and SR&CR(Grid)) against the

tree-based methods (i.e., Octomap and SR&CR(Octo)). Normally, grid-based maps are

expected to offer superior update efficiency compared to tree-based maps. However,

we have observed that grid-based methods are slower than tree-based methods at high
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resolution (d =5 cm) in the sequences Kitti_06 and Kitti_07. The inefficiency of grid-

based methods can be attributed to their reliance on swap space on the SSD during

the update process since their memory usage exceeds the capacity of RAM. As memory

access on SSD is significantly slower than RAM, this reliance on swap space can lead to

the observed slower update performance.

4.7.3.2 Efficiency Analysis

We present a comprehensive analysis of our superior efficiency performance based

on the time complexity analysis in Section 4.6. As demonstrated in Section 4.6, the ef-

ficiency of D-Map is solely determined by the number of visited cells SDMap due to its “on-

tree” update strategy. However, GridMap, Octomap, SR&CR(Grid), and SR&CR(Octo),

which follow the classical occupancy update pipeline using ray-casting, have an efficiency

that depends on two factors: the number of cells Src traversed by rays and the time

complexity for map updates, which is O(1) for grid-based methods and O(log(D/d))

for octree-based methods. Therefore, we conduct a comparison between the number of

visited cells SDMap in D-Map and the number of updated cells Src in the ray-casting-

based methods, followed by a comparison of the corresponding occupancy update time

(without counting the preprocessing time). Specifically, we opt to compare D-Map with

SR&CR(Grid) and SR&CR(Octo), which incorporate super rays and culling region tech-

niques to reduce the number of cells. The comparison is carried out on FR_079 and

Freiburg sequences, with the results presented in Fig. 4.12.

In comparison between SDMap and Src, we conduct an ablation study to investigate

the performance of all methods (i.e., SR&CR(Grid), SR&CR(Octo), and D-Map) with-

out any removal of cells. For our D-Map, we disable the removal of known cells from

the octree. For SR&CR(Grid) and SR&CR(Octo), we disable the culling region tech-

nique and denote these modified methods as “SR(Grid)” and “SR(Octo)”, respectively.

As shown in Fig. 4.12, SR(Grid) exhibits the highest count of cells across all resolutions.

followed by SR(Octo) and our D-Map without removal. The difference in the number

of updated cells between SR(Grid) and SR(Octo) is attributed to the batching-based

method in SR(Octo) that batches the uniform cells traversed by multiple rays to reduce

the cells. The difference between the two methods becomes smaller at higher resolution

as there are fewer uniform cells traversed by multiple rays. It is worth noticing that,
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although batching is essential to tree-based methods to account for the cost of tree up-

dates, it is unnecessary for grid-based maps, which have an efficient update in simple

time complexity of O(1). As analyzed in Section 4.6, D-Map has a theoretical number

of visited nodes SDMap = O(nRd log(Dd )) in its worst case, which is larger than the the-

oretical number of traversed cells Src = O(nRd ) in the worst case of ray-casting-based

methods. However, in this ablation study, D-Map without removal visits a comparable

number of nodes to SR(Octo) because the worst case of D-Map rarely occurs. Specifi-

cally, D-Map without removal processes fewer nodes than SR(Octo) at low resolutions

(i.e., d ⩾ 0.25m) in indoor sequence FR_079 and at all resolutions except 5 cm in out-

door sequence Freiburg. When approaching high resolutions (e.g., d < 0.25m in indoor

sequence and d = 0.05m in outdoor sequence), the number of visited nodes SDMap on

D-Map is closer to its worst case, which has a higher increasing rate on a logarithmic

scale than Src.

The removal of known cells and the culling region technique are then enabled in

corresponding methods for further investigation. D-Map demonstrates the most signifi-

cant reduction in the number of cells among all approaches when the removal technique

is enabled, while the culling region technique only slightly lowers the number of updated

cells in SR&CR(Grid) and SR&CR(Octo).

Figure 4.12: The number of cells to be updated in sequences FR_079 and Freiburg.

Finally, we compare the time consumption for occupancy updates in both sequences,

as shown in Fig. 4.13. When disabling the removal of known cells in D-Map and the

culling region technique, the results reveal that D-Map without removal outperforms

the others across all map resolutions in sequence Freiburg, as well as at low resolutions

(i.e., d > 5cm) in sequence FR_079. At high resolutions (i.e., d ⩽ 0.5m) in sequence
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Figure 4.13: The update time in sequences FR_079 and Freiburg.

FR_079, SR(Grid) achieves better performance than D-Map without removal due to a

smaller number of cells to be updated. However, despite having a slightly larger number

of visited nodes, D-Map without removal maintains its leading position over SR(Octo),

which is hindered by the timely updates on the tree structure. When enabling the

removal of known cells, D-Map demonstrates the highest efficiency across different map

resolutions, owing to the fewest cells requiring to be updated.

4.7.4 Accuracy and Memory Evaluation

4.7.4.1 Accuracy Benchmark

We conduct accuracy benchmark experiments using the mapping results from Oc-

tomap [96] as ground truth. Specifically, we calculate the accuracy of D-Map by counting

the cells with correct occupancy states over the total number of cells inside the mapping

area and with the corresponding states. The benchmark results of unknown space and

free space are presented in Table 4.3. It is noted that the accuracy of occupied space is

very close to 100% in all experiments and thus not presented in the table. This is due

to our high confidence in occupied space based on the assumption of high accuracy and

low false alarm rate of LiDAR sensors.

The overall accuracy performance of D-Map shows a slight accuracy loss compared

to Octomap, as reported in Table 4.3. The inaccuracy mainly arises from the occupancy

state determination module on the depth image. At low resolutions (i.e., d ⩾ 0.5m),

the accuracy of unknown space is relatively lower due to the more severe discretization

error introduced in (4.3) when determining the projected area on a lower-resolution
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depth image. The results also show a decreasing accuracy of free space when the map

resolution grows smaller. This decreasing accuracy is introduced by projecting a cell by

its circumsphere on the depth image. When a ray crosses a large cell only at its corner

but not intersects with its circumsphere, this large cell is incorrectly decided as not

intersecting with any rays without further splitting and query. Thus, the small cells at

the corner space are falsely determined as unknown. With a higher map resolution, more

small free cells in the corner space are determined as unknown, leading to a decreasing

accuracy. To improve the accuracy of free space for such cases, it is recommended to use

a smaller initial cell size E to avoid missing the cell corner. However, a trade-off must be

considered as a smaller E might miss the opportunity to update on large cells, leading

to slower occupancy updates.

Notably, since we utilize Octomap as ground truth, the discretization error in Oc-

tomap also contributes to the accuracy loss in our benchmark experiment. Besides,

despite the quantization error, Octomap has been widely used in real-world applica-

tions. Therefore, the accuracy achieved in our experiment, as reported in Table 4.3, is

adequate for various practical scenarios, as demonstrated in Section 4.8.

4.7.4.2 Memory Consumption

We evaluated the memory consumption of each mapping approach and reported

the results in Table 4.4. Given that SR&CR(Grid) and SR&CR(Octo) utilize the same

map structure as GridMap and Octomap with equivalent mapping results, we only

compare the memory consumption of D-Map against GridMap and Octomap. As shown

in Table 4.4, Octomap exhibits the lowest memory consumption in most experiments,

while GridMap consumes the highest. The memory consumption of D-Map follows that

of Octomap closely. The excess memory consumption of D-Map mainly arises from using

hashing grid map for maintaining occupied space. When high-resolution maps are built

in large-scale environments (e.g., 5 cm in Kitti datasets), our D-Map exhibits better

memory efficiency than Octomap due to its decremental property as well as the proper

combination of grid-based and tree-based structures for different occupancy states.
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4.8 Real-world Applications

We demonstrate the high efficiency of D-Map in two applications that require real-

time high-resolution occupancy mapping on a high-resolution LiDAR.

4.8.1 Interactive Guidance for High-resolution Real-time 3D Map-

ping

With the recent emergence of 3D applications such as metaverse [223, 224], vir-

tual and augmented reality [225], and physical simulators [221, 226], the demand for

accurate and detailed 3D reconstructions of real-world environments has increased. The

accuracy and completeness of such reconstructions depend heavily on the quality of the

data collection process. To overcome this challenge, we have developed an interactive

guidance system that leverages our D-Map to achieve high-resolution real-time 3D map-

ping. The system offers users information on the explored and unexplored areas, along

with suggestions for the next mapping region. By utilizing this information, users can

avoid rescanning the same areas repeatedly or skipping any unscanned areas, thereby

improving their overall work efficiency. A video demonstrating the use of the system is

available on YouTube: youtu.be/m5QQPbkYYnA?t=251.

4.8.1.1 Experiment Setup

Figure 4.14: (a) Hardware setup of the handheld device for high-resolution 3D map-
ping, including an onboard computer (blue dashed block), a high-resolution LiDAR
(orange dashed block), and a screen for online visualization (green dashed block). (b)
A screenshot of the online visualization for interactively guiding the mapping process.
The red cubes are the frontiers that users need to eliminate by scanning. The yellow
arrow indicates the direction to the next suggested frontier for scanning. The depth
measurements are accumulated and visualized by height value on the screen. (c) The
first-person view of the user to conduct 3D mapping using our handheld device.

https://youtu.be/m5QQPbkYYnA?t=251
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A handheld device is designed to conduct high-resolution 3D mapping, as shown in

Fig. 4.14(a). The handheld device is equipped with an Intel NUC onboard computer

with an i9-8550U CPU and 64GB memory, and an OS1-128 LiDAR integrated with an

IMU. The OS1-128 LiDAR can output 2, 621, 440 high-precision point clouds per second

with a maximum detection range of 120m and a 360°×45° field of view. The frame rate

of the OS1-128 LiDAR is set to 10Hz.

We develop an interactive guidance system that consists of three modules: local-

ization, mapping, and guidance. The localization module provides 6 DoF sensor pose

estimation using our previous work FAST-LIO2 [219]. Additionally, the point cloud

acquired at each frame is compensated for motion distortion in FAST-LIO2 and trans-

formed from the LiDAR frame to the world frame. The mapping module leverages our

D-Map to update the occupancy map in real-time using the estimated LiDAR pose

and the currently registered point cloud. Finally, the guidance module visualizes the

frontiers, which correspond to the unknown space adjacent to the free space in the oc-

cupancy map, and suggests a direction to the user for complete scanning, as shown in

Fig. 4.14(b).

The experiment aims to reconstruct an area measuring 43m×19m×9m located

in Main Building, University of Hong Kong. We use a map resolution of 10 cm for

occupancy mapping. The relax factor for D-Map is set to γ = 1 for full accuracy. In

addition, we set the completeness threshold ε in Alg. 9 to 0.8, and the initial cell size E

to 1.6m.

4.8.1.2 Results

Table 4.5: Occupancy Mapping Performance in Interactive Guidance System

Average Update Time Processed Scan Completion Rate1

D-Map 36.50ms 9980 99.46%
SR&CR(Grid) 348.58ms 2587 25.78%
SR&CR(Octo) 721.79ms 1252 12.48%

1 The completion rate is calculated as the ratio of the processed scan over the total scan. In this
experiment, LiDAR generated 10034 scans of point clouds in total.

As Fig. 4.16(a) illustrates, the building reconstruction was completed with high

fidelity. The mapping area was thoroughly scanned, except for an inaccessible classroom
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Figure 4.15: Comparison of the update time among our D-Map, SR&CR(Grid), and
SR&CR(Octo). The update time of D-Map is acquired online in the interactive guid-
ance system during the mapping process. The update time of the SR&CR(Grid) and
SR&CR(Octo) is obtained by processing the recorded point clouds offline on the same
computation platform.

located in the middle of the map.

We conducted a performance evaluation of our D-Map against the super ray and

culling region-based methods (i.e., SR&CR(Grid) and SR&CR(Octo)) on the recorded

LiDAR data file that contains 10, 034 scans of LiDAR points in total. As shown in

Fig. 4.15 and Table 4.5, D-Map achieved an average update time of only 36.50ms to

update the occupancy map, which is about 9.6 times faster than SR&CR(Grid) and

19.8 times faster than SR&CR(Octo). In addition, D-Map successfully processed the

LiDAR data in real-time, except for the initial 54 s when the device was stationary.

Consequently, D-Map processed 99.46% of the total scan, generating a high-resolution

occupancy map with high fidelity. In contrast, SR&CR(Grid) and SR&CR(Octo) failed

to process in real-time, processing only 25.78% and 12.48% of the total scan, respec-

tively. As a result, they missed a significant amount of environment information required

for interactive guidance.

4.8.2 Autonomous UAV Exploration

Unmanned aerial vehicles (UAVs) are becoming increasingly popular for autonomous

exploration and scanning of real-world environments due to their unrestricted flight view

and accessibility to hard-to-reach locations, such as caves [227] and ancient remains

[228]. However, the limited onboard computing power of UAVs presents a higher de-

mand for efficient mapping modules compared to handheld devices. To address this

demand, we have embedded our D-Map into a LiDAR-based UAV system, enabling it to



156
Chapter 4. Occupancy Grid Mapping without Ray-Casting

for High-resolution LiDAR Sensors

autonomously explore complex scenes with higher-resolution mapping. This integration

enables UAVs to achieve real-time mapping and guidance, thereby providing high-fidelity

results even in challenging environments.

4.8.2.1 Hardware System Setup

The UAV hardware platform includes an OS1-128 LiDAR, a Nora+ flight controller,

and an onboard computer NUC 12 Pro Kit (i7-1260P CPU, maximum 4.70GHz, 12-core,

32GB RAM), as shown in Fig. 4.18(c). The extrinsic parameters between the LiDAR

and the IMU on the flight controller are calibrated by LI-Init [229]. Additionally, we

installed an action camera (DJI action 2) on the UAV to provide first-person view

(FPV) images for better visualization. The small size of the UAV (40 cm×40 cm×21 cm),

combined with its large detection range and high scanning density, makes it well-suited

for exploration and scanning tasks in complex scenes.

Figure 4.16: The high-fidelity point cloud map reconstructed from data collected by
a high-resolution LiDAR. (a) Main Building in the University of Hong Kong, collected
by a handheld device. (b) A forest in Hong Kong, autonomously collected by a UAV
platform.

4.8.2.2 Software System Implementation

Multiple modules operate concurrently on the onboard computer to accomplish

autonomous exploration tasks. The localization module employs FAST-LIO2 [219] to

estimate the UAV’s pose using data from the LiDAR and the IMU. This module gener-

ates undistorted point clouds, which are fed into the mapping module of the exploration

planner. The mapping module utilizes D-Map for real-time occupancy mapping in place

of the traditional ray-casting-based methods. The exploration planner, FUEL [12], reads

the information in the mapping module and calculates efficient, collision-free trajectories
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for exploration. These trajectories are tracked using an on-manifold model predictive

controller [230].

In this experiment, we used the same parameters for D-Map as in Section 4.8.1.

The maximum detection range of the LiDAR was set to 15m to ease the computation

load in the exploration planner.

4.8.2.3 Results

The real-flight autonomous exploration and scanning experiments were conducted in

two complex scenarios: an abandoned fortress site built about 100 years ago (20.5m×16m×6m)

and a natural forest (17m×35m×3m). The entire exploration process is available on

youtu.be/m5QQPbkYYnA?t=78. We successfully carried out three flight experiments in

each scenario. The UAV completed high-precision scanning in these complex environ-

ments, and the average flight time for autonomous exploration and scanning by the UAV

was 123 s and 163 s, respectively. The acquired point clouds are shown in Fig. 4.18(a)

and Fig. 4.16(b), exhibiting high precision and completeness.

We compared the running times of the mapping module employing D-Map and a

uniform grid map utilizing ray-casting, which was the original method used in FUEL [12],

on the same computing platform. As depicted in Fig. 4.17, D-Map substantially reduced

the time required for the mapping module, thereby demonstrating its effectiveness and

efficiency for real-time occupancy mapping on massive streaming point clouds of over

two million per second.
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Figure 4.17: The comparison of processing time between a ray-casting-based grid map
and our D-Map.

https://youtu.be/m5QQPbkYYnA?t=78
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Figure 4.18: Our proposed framework D-Map served as a real-time high-resolution
occupancy mapping module for an autonomous UAV exploration task in an ancient
fortress. (a) The high-fidelity point cloud collected by UAV. (b) A bird-view of the
scene. (c) The aerial platform carried a 128-channel LiDAR (OS1-128) to conduct
the exploration task. The accompanying video of this paper is available on Youtube:
youtu.be/m5QQPbkYYnA.

https://youtu.be/m5QQPbkYYnA
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4.9 Extensions

4.9.1 Occupancy Mapping in Large-scale Environment

Table 4.6: Comparison of Update Time (ms) at Different Resolutions on a Large-scale
Dataset

ford_1 ford_2

Resolution [m] 1.0 0.5 0.25 0.15 1.0 0.5 0.25 0.15

GridMap 21.0 42.7 153.4 ×1 18.3 40.5 133.9 ×
Octomap 186.8 305.5 570.9 1312.6 176.5 289.3 533.1 966.0

SR&CR(Grid) 24.7 64.1 233.2 × 22.9 58.9 208.2 ×
SR&CR(Octo) 34.8 105.4 373.1 1197.9 30.2 103.6 391.8 ×

Ours 19.1 41.1 121.0 277.9 17.2 36.5 111.3 278.3
1 “×” denotes that this method failed due to exceeding memory limitation (i.e., 64GB RAM +
64GB swap memory).

To evaluate the performance of our D-Map in large-scale occupancy mapping, we

conduct an experiment using two sequences from Ford Multi-AV Seasonal Dataset [231].

These two sequences, originally namely “2017-10-26-V2-Log1” and “2017-10-26-V2-Log2”,

are referred to as ford_1 and ford_2, respectively. The mapping areas for these se-

quences measure 8090m×11 494m×96m and 8107m×11 659m×103m. We compare

our D-Map with four benchmark methods, as discussed in Section 4.7. The correspond-

ing results are presented in Table 4.6. The findings indicate that D-Map consistently

outperforms the other methods across all resolutions in the context of large-scale appli-

cations. Notably, D-Map exhibits superior memory efficiency, enabling it to handle a

resolution of 0.15m within such expansive mapping areas. In contrast, grid-based maps

(i.e., GridMap and SR&CR(Grid)) fail to meet the memory limitations imposed by the

device.

4.9.2 Map Region Sliding for D-Map

In the context of occupancy mapping in even larger-scale environments, the issue

of memory consumption becomes a significant concern. Therefore, we introduce a map

region sliding technique in D-Map to address this challenge. This approach allows the

removal of distant occupancy information from the current vehicle position. Fig. 4.19

illustrates the concept of map region sliding, wherein the mapping region of D-Map
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Figure 4.19: A demonstration of D-Map with map region sliding. Figures (a), (b),
and (c) showcase the mapping process as the vehicle moves from left to right, with the
mapping region sliding accordingly. The white point clouds represent the accumulated
historical point clouds. The colored space within the mapping region of D-Map repre-
sents the occupancy information. An axis-aligned bounding box is employed to provide
a visual representation of the mapping region, outlined by orange lines.
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slides alongside the vehicle. The sliding process adjusts the mapping region when the

vehicle has moved beyond a distance threshold and removes information outside of the

mapping region from the D-Map. By dynamically updating the mapping region, D-Map

optimizes memory usage and only retains the relevant occupancy information. This

mechanism enables our method to handle large-scale environments while mitigating the

impact of memory constraints.

4.9.3 Extension to Range Sensors with Measurement Noise

In D-Map, the on-tree update strategy leverages the high precision of depth mea-

surements from LiDAR sensors to remove known cells on the octree directly. We further

extend D-Map to range sensors with higher measurement noise (e.g., depth cameras)

by incorporating occupancy probabilities. At each update, the occupancy probabilities

on the correspondent nodes decrease for cells determined as known, while the occu-

pancy probabilities in the corresponding cells of point clouds in the hashing grid map

increase. The removal of D-Map is disabled to obtain correct occupancy probabilities.

When querying the map, D-Map summarizes the occupancy probabilities from the hy-

brid map structure to determine occupancy states. This adaptation of occupancy prob-

abilities appropriately handles measurement noise similar to other existing occupancy

mapping approaches while retaining the superior efficiency of D-Map. We conduct sev-

eral experiments to validate the performance of D-Map when incorporating occupancy

probabilities.

4.9.3.1 Qualitative Evaluation

We conducted a qualitative comparison of the mapping results obtained from the

original D-Map and D-Map with occupancy probability against those obtained from

Octomap. To evaluate our approach, we used the pioneer_slam3 sequence in the TUM

dataset [232], which was captured by a Kinect depth camera mounted on a Pioneer

robot. The original D-Map used the same parameters as those described in Section 4.7.

For D-Map with occupancy probability and Octomap, the hit and miss probabilities

by a ray for occupied and free space are set to 0.7 and 0.4, respectively, while the

occupancy threshold for determining a cell as occupied is set to 0.9. The mapping

results are presented in Fig. 4.20. The results of the original D-Map and D-Map with
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occupancy probability (Fig. 4.20(a) and (b), respectively) highlight the effective handling

of measurement noise from the depth camera. Furthermore, the mapping result obtained

by D-Map with occupancy probability (Fig. 4.20(b)) exhibits few discrepancies from that

produced by Octomap (Fig. 4.20(c)), indicating our accurate mapping performance.

4.9.3.2 Efficiency

We conduct benchmark experiments to evaluate our efficiency on depth cameras.

We compare the update time of our original D-Map and D-Map with occupancy proba-

bility against the four mapping methods in Section 4.7, using four sequences in the TUM

dataset [232]: pioneer_360, pioneer_slam, pioneer_slam2, and pioneer_slam3. The re-

sults are presented in Table 4.7, where the original D-Map and D-Map with occupancy

probability are referred to as “Ours” and “Ours(prob)” respectively. Super Ray and

Culling Region-based Grid Map (i.e., SR&CR(Grid)) performs the best at resolutions of

1.0m and 0.5m. However, at high resolutions (i.e., d < 0.5m), our original D-Map and

D-Map with occupancy probability have superior performance. On average, the original

D-Map and D-Map with occupancy probability achieve approximately 9.1 and 5.3 times

faster than the fastest competing method (i.e., GridMap) at the resolution of 5 cm, re-

spectively. The update time of D-Map with occupancy probability is comparable to that

of the original D-Map at low resolutions (i.e., d ⩾ 0.25m). However, at high resolutions

(i.e., d ⩽ 0.1m), D-Map with occupancy probability is slower than the original D-Map

since a large number of cells are kept on the octree to maintain occupancy probabilities.

4.9.3.3 Accuracy

In addition to the previous experiments, we conduct simulation experiments to eval-

uate the accuracy of D-Map with occupancy probability. The simulation environment

has a dimension of 30m×20m×4m, as depicted in Fig. 4.21(a). We evaluate the Area

Under the Receiver Operating Characteristic (AUROC) curves of D-Map with occu-

pancy probability, Grid Map, and Octomap by removing different fractions of observed

data, with results provided in Fig. 4.21(b). The results show that our D-Map with

occupancy probability has a similar mapping performance as Octomap and Grid Map.
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(a) (b) (c)

Figure 4.20: The mapping results of the sequence pioneer_slam3 in TUM dataset.
(a) The original D-Map (b) D-Map with occupancy probability. (c) Octomap

Figure 4.21: (a) The simulation environment for accuracy evaluation. (b) The AUROC
curves of D-Map with occupancy probability, Grid Map, and Octomap for different
fractions of removed data.
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4.9.4 Comparison against SuperEight

SuperEight [123] is a mapping system designed for efficient occupancy mapping

featuring adaptive resolution. Similar to D-Map, this approach leverages depth image

rasterization to accelerate occupancy updates. In this section, we conduct a compara-

tive analysis between our proposed D-Map method and SuperEight using the Parkland

sequence from the Newer College Dataset [233]. The LiDAR sensor used in the Park-

land sequence is the Ouster OS1 with 64 channels, capable of generating 2,621,440

points per second. For our experimental evaluation, we utilized the publicly available

implementation of SuperEight3. We present the experiment results in Table 4.8 which

detailed the time consumption for updates at different resolution. The results show that

the update performance of our D-Map surpasses that of SuperEight at high resolutions

(d ⩾ 0.25m). Notably, SuperEight experienced a significant performance failure at the

resolution of 0.05 meters, as the processing time for the complete sequence exceeded

12 hours. Conversely, at lower resolutions (d < 0.25m), D-Map demonstrates slightly

slower performance compared to SuperEight, primarily attributed to the preprocessing

duration required for depth image rasterization and segment tree construction.

Table 4.8: Update Time (ms) on Parkland Sequence of Newer College Dataset

Resolution [m] 1.0 0.5 0.25 0.1 0.05

SuperEight 5.60 20.41 83.96 1004.90 -
Ours 15.12 26.99 54.49 186.67 413.76

“-” denotes that this method failed due to extremely long processing time for the entire sequence
(over 12 hours).

In addition, we present the detailed update time at resolution of 0.25m and 0.1m,

as shown in Figure 4.22. The figure depicts that, although D-Map initially exhibits a

higher update time compared to SuperEight, its inherent decremental property rapidly

reduces the update time, surpassing SuperEight and continuing to decrease throughout

the entire mapping process. Moreover, the update time trend in D-Map remains more

consistent across the two resolutions, whereas SuperEight encounters peaks in update

time at the resolution of 0.1m.
3https://supereight2.readthedocs.io/en/stable/
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Figure 4.22: The detailed update time at resolution of 0.25m and 0.1m on Parkland
Sequence of Newer College Dataset.

4.10 Discussion

In this section, we first discuss occupancy mapping using a depth image in terms of

efficiency and accuracy, followed by the discussion on parallel processing over D-Map.

4.10.1 Occupancy Mapping on Depth Image

4.10.1.1 Efficiency

ray-casting is an indispensable component in the existing occupancy mapping frame-

work for occupancy updates. However, the computational demands of ray-casting in-

crease with the number of point clouds and the longer detection range of high-resolution

LiDARs, which makes it unsuitable for computationally limited robotic applications. To

alleviate the increasing computation load in occupancy mapping, we propose an alter-

native approach that leverages a depth image created from point clouds to determine

occupancy states. Moreover, we design a novel on-tree occupancy update strategy that

exploits the hierarchical structure of the octree to determine the occupancy state of

larger cells, avoiding the need for timely updates on smaller cells as required by ray-

casting-based methods. Additionally, we remove known cells from the octree, reducing

the map size and further lowering the update cost. The significant reduction in both the
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number of cells to be updated and the cost of map update renders substantially high

efficiency in D-Map, as verified in the benchmark experiments in Section 4.7.

4.10.1.2 Accuracy

The accuracy of D-Map can be affected by two primary factors: depth map raster-

ization and occupancy state determination, which are both related to the depth map

resolution.

In the rasterization process, using a low-resolution depth image might result in the

loss of depth measurements since a pixel only keeps one point with the smallest depth,

as described in Section 4.4.1. In the occupancy state determination process, D-Map

determines occupancy states in spherical coordinates on the depth image rather than

Cartesian coordinates. Several design choices affect the accuracy of D-Map, including

1) projecting cells onto a depth image using their circumsphere radius, which can result

in information loss at the corners of the cells; 2) discretizing the projected area into

pixels on a depth image, which can result in a distorted shape in 3D space; and 3)

using an occupancy state determination method that allows for early determination of

large regions if the observation completeness α surpasses a threshold ε, which may cause

errors in the unobserved regions.

Despite a slight decrease in accuracy, D-Map provides comparable accuracy with

the existing mapping approaches while achieving higher efficiency thanks to the com-

prehensive analysis and appropriate selection of depth image resolution.

4.10.2 Parallel Processing over D-Map

Although the primary focus during the design of D-Map does not prioritize parallel

processing, certain aspects of the update process in D-Map lend themselves well to

parallel implementation. Specifically, 1) The projection of a point cloud onto a depth

image can be parallelized at the pixel level. 2) The update process of the hashing grid

map naturally lends itself to parallel processing, allowing concurrent updates to different

grid cells. However, it is worth noting that the octree structure employed in D-Map poses

challenges for parallelization. Parallelizing the octree’s operations is not straightforward
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due to its hierarchical nature. As an alternative, we suggest utilizing a B-tree [234] to

exploit parallel processing on efficient management of 3D data within D-Map.

4.11 Conclusion

This paper proposes a novel framework for occupancy mapping termed D-Map,

which aims to provide efficient occupancy updates for high-resolution LiDAR sensors.

Our proposed framework consists of three key techniques. Firstly, a method has been

proposed to determine the occupancy state of a cell at arbitrary size through depth image

projection. Secondly, a hybrid map structure has been developed with an efficient on-

tree update strategy. Thirdly, a removal strategy has been introduced, which utilizes the

low false alarm rate of LiDARs to remove known cells from the map. These techniques

work in conjunction to reduce the number of cells that need updating and lower the cost

of map updates, resulting in a significant improvement in efficiency.

To validate our proposed framework, we provide theoretical analyses of its accuracy

and efficiency and conduct extensive benchmark experiments on various LiDAR datasets.

The results show that D-Map substantially improves efficiency against other state-of-

the-art mapping methods while maintaining comparable accuracy and high memory

efficiency. Two real-world applications were demonstrated to showcase the effectiveness

and efficiency of D-Map for high-resolution LiDAR-based applications.
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Conclusion and Future Work

5.1 Conclusions

This thesis primarily focuses on addressing the efficiency challenges in LiDAR map-

ping. To achieve higher efficiency in simultaneous localization and mapping (SLAM) and

occupancy mapping, this thesis proposed new map representations and structures that

leverage the strong sensing abilities of LiDARs. This, in turn, enhanced the autonomous

ability of robots to conduct complex tasks in challenging environments.

Chapter 2 presented ikd-Tree, a data structure designed to manage sequential point

clouds. The ikd-Tree supports various incremental functions, including point-wise and

box-wise insertion, deletion, and re-insertion, that are suitable for robotic applications.

The balance requirement of k-d trees is addressed through a double-thread re-balancing

mechanism that actively monitors the balance status of (sub-)trees and partially rebuilds

those that are unbalanced. The guarantee of tree balance ensures consistently high

efficiency in incremental updates and nearest neighbor search, which is validated through

theoretical time complexity analysis and benchmark comparison against static k-d trees.

Chapter 3 introduced a novel LiDAR-inertial odometry framework, FAST-LIO2,

that exhibited high efficiency, accuracy, and robustness. FAST-LIO2 takes advantage of

the powerful ikd-Tree to manage a point cloud map with efficient incremental updates

and nearest neighbor search. The high efficiency of ikd-Tree enables FAST-LIO2 to di-

rectly register raw points into the map without feature extraction. This direct approach

endows FAST-LIO2 with higher accuracy and robustness than existing methods as subtle
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features of surrounding environments can be fully exploited. Furthermore, as no hand-

engineered feature extraction is required, FAST-LIO2 is applicable to LiDAR sensors

with different types of scanning patterns, making it a popular framework for provid-

ing accurate state estimation for robots. Exhaustive benchmark experiments validated

the superior performance of FAST-LIO2 against state-of-the-art methods. We deployed

FAST-LIO2 in both handheld and aerial platforms to demonstrate its effectiveness in

providing accurate localization in agile motions and large-scale scenarios.

Chapter 4 proposed D-Map, an efficient occupancy mapping framework for high-

resolution LiDAR sensors. D-Map avoids inefficient ray casting by projecting on a

depth image to determine occupancy states. An on-tree update strategy is designed in

collaboration with the projection-based occupancy state determination method to re-

duce redundant visits to cells, improving efficiency in occupancy updates. Furthermore,

D-Map takes advantage of the low false alarm rate of LiDAR sensors to directly remove

known cells from the map. This approach endows D-Map with a decremental prop-

erty, leading to further improved efficiency in both memory and computation due to the

decreasing map size. The design of D-Map was validated through rigorous theoretical

analysis in both accuracy and efficiency, accompanied by extensive benchmark exper-

iments against existing occupancy grid mapping methods. The results demonstrated

that D-Map achieved significant improvements in both computational and memory effi-

ciency while maintaining comparable mapping accuracy. This thesis also demonstrated

deployments of D-Map in real-world applications to support occupancy grid mapping

for high-resolution LiDAR sensors in real-time.

5.2 Discussion of Limitations

This thesis proposed different designs of map representations and structures aimed

at enhancing the efficiency of LiDAR SLAM and occupancy mapping. However, while

these designs demonstrated excellent performance, we acknowledge two limitations in

our methods.

Firstly, the proposed mapping approaches lack the ability to actively correct pre-

vious maps, which is critical in maintaining a consistent map when faced with accumu-

lated odometry drift and dynamic, long-term scenarios. Although ikd-Tree in Chapter 2
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supports various types of incremental functions that allow for map correction, FAST-

LIO2 assumes a perfect point cloud map without considering potential inconsistencies

and inaccuracies. Since FAST-LIO2 is a front-end framework without loop closure, ac-

cumulated errors in odometry can lead to an inconsistent contaminated map, which

deteriorates localization accuracy. Similarly, in Chapter 4, D-Map assumes perfect pose

estimation and static environments, which limits its ability to correct inaccuracies in

mapping, particularly in dynamic scenarios.

Secondly, the proposed mapping approaches were designed for serial processing

without careful consideration of their possible extension to parallel processing in the

future. Although query functions in Chapter 2 can be easily paralleled, the incremental

updates are limited to a single-thread manner due to the binary tree structure and the

need for re-balancing. Therefore, FAST-LIO2 in Chapter 3 follows a serial processing

manner in updating the point cloud map, while the nearest neighbor search is done in a

parallel manner. Similarly, in Chapter 4, D-Map utilizes an octree to allow efficient on-

tree updates, in which the tree structure also limits the extension to parallel processing.

5.3 Future Work

Motivated by the aforementioned limitations, this thesis proposes three potential

directions for future research in LiDAR mapping.

5.3.1 Consistent LiDAR Mapping

Previous research has sufficiently investigated the inconsistency of LiDAR mapping

resulting from inaccurate pose estimation through loop closure detection [235–238] and

LiDAR bundle adjustment [46, 65, 195]. These methods leverage a strong human prior in

the geometric structures and rigorous mathematical derivation to guarantee convergence

in accuracy. Another branch of research has been working on learning-based approaches,

which aims to extract deep features that are difficult for humans to understand to fa-

cilitate feature matching and place recognition [239–242]. There is still great potential

to exploit the combination of these two branches of research. For instance, inspired by
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the idea of Gaussian Splatting [243], we could easily capture the geometric features us-

ing mathematical representations and leverage learning-based methods to train suitable

parameters within the representation and exploit an effective matching algorithm.

Achieving consistent LiDAR mapping also requires the identification of static and

dynamic objects, with the former used for scene reconstruction and the latter for object

tracking and prediction. Research in detecting dynamic objects has explored explicit

designs for pattern detection [244, 245] as well as learning-based methods [246–248].

However, these approaches face significant challenges when adapting to various types

of LiDAR sensors, either due to the need for handcrafted parameter tuning or limited

generality. Nevertheless, considering that the dynamic nature of objects is inherent to

their physical properties (e.g., a car is movable, whether moving or not), we believe

that learning-based methods will emerge as the dominant paradigm in the future. Deep

features, such as semantic information, can be learned and encoded by training on large

datasets, enabling the robust detection of dynamic objects across different LiDAR sensor

types.

While the previous discussion focuses on the spatial aspect of consistent mapping,

long-term consistency is also crucial to address temporal changes in the environment,

such as seasonal variations [231]. With temporal changes, even if the pose estimation

is correct, the robot may encounter sensor measurements that are inconsistent with the

historical map due to real-world scenario differences. In such situations, the mapping

system should have the ability to determine whether to correct the information in the

map by assessing the uncertainty in sensor measurements, pose estimation, and the map

itself.

5.3.2 Efficient Mapping on Heterogeneous Platform

A significant portion of existing research in LiDAR mapping has primarily focused

on CPU platforms, which employ serial computing methods to process sensor measure-

ments. However, as LiDAR sensors produce increasingly large amounts of data, compu-

tation times increase linearly or even polynomially. This poses a challenge for mobile

robots with limited computational power as they may struggle to process the growing
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amount of LiDAR data efficiently. To address this issue, researchers have developed var-

ious simplification techniques, such as voxel down-sampling and feature extraction, that

trade off algorithm efficiency on low-power mobile robots with accuracy and robustness.

However, these approaches are only partial solutions to the problem at hand and do

not address the growing gap between the demands of processing increasing amount of

LiDAR measurements and the limited computational capabilities of CPUs.

The clock speed of CPUs has been limited to around 4GHz for a long time. From

the 1950’s to the 2000’s, the clock speed doubled every 1-2 years, following the predic-

tion of Moore’s Law [249]. However, this trend has ceased to hold true in recent years

due to Dennard Scaling [250], which states that the power density of transistors remains

constant as their size decreases. As transistors have now reached the nanometer level,

manufacturers face significant challenges in striking a balance between size, power con-

sumption, and heat generation. Consequently, it is time to seek change and explore new

computational structures for the future of mapping.

Inspired by the insights of renowned scientists, we turn our attention to heteroge-

neous computational structures. Herb Sutter, the author of “The Free Lunch is Over”

which explained the transition from single-core CPUs to multi-core CPUs, stated in his

2012 article “Welcome to the Jungle” [251] that “Hence, a single compute-intensive ap-

plication will need to harness different kinds of cores, in immense numbers, to get its job

done”. Similarly, Andrew Davison noted in [24] that future mapping must incorporate

parallel and heterogeneous computation, predicting it to be the dominant paradigm for

practical systems. Therefore, we believe that, moving the heavy computational pressure

in LiDAR mapping from CPUs to parallel, heterogeneous, specialized processing units

would offer significant potential to meet the rapidly increasing demands for computa-

tional resources.

In general, Emerging components of a heterogeneous computing structure could

include computation units for both serial processing (CPUs) and parallel processing

(IPUs), as well as specialized units for graphics processing (GPUs), tensor computation

(TPUs), and neural network inference (NPUs). To illustrate initial designs for LiDAR

mapping on heterogeneous computation units, we use NVIDIA Jetson modules as an

example, which are embedded computation systems specialized for edge computing in
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robotics [252]. The Jetson platforms include an ARM architecture CPU and a GPU. In

this context, the mapping module is ideally implemented fully using the GPU in parallel,

allowing for concurrent access, updates, and queries to the map. Furthermore, the par-

allel computation ability facilitates the summarization of information from the mapping

module (e.g., parallel reduction sum of residuals). The serial computation unit lever-

ages the summarized results to make decisions while managing the data communication

among the mapping module and other serial modules.

5.3.3 Multi-modal Collaborative Mapping

Multi-modal mapping involves integrating visual sensors, such as RGB cameras and

infrared cameras, with LiDAR sensors to achieve a more comprehensive understanding

of the environment. While LiDAR sensors excel at reconstructing the geometry of the

environment, extracting semantic information directly from depth measurements can be

challenging. Visual sensors, on the other hand, are well-suited for capturing semantic

information. However, when investigating state-of-the-art learning-based methods, the

majority of these approaches concentrate on analyzing semantic information from a

single image input or a series of historical image inputs. A more effective solution

could be to combine implicit features from image encoders with accurate 3D geometry

representations from LiDARs. The fundamental principle underlying this approach to

multi-modal mapping revolves around creating a comprehensive map representation that

effectively accommodates information from all modalities.

The information provided by a single agent is often limited due to constraints on

payload, travel distance, and traversability. To overcome these limitations, we propose

collaborative mapping, which integrates information from heterogeneous agents (e.g.,

UAVs, legged robots) equipped with different sensors to build a more efficient and com-

prehensive mapping system. Previous research in multi-agent robotic systems [16, 253,

254] has demonstrated the advantages of decentralized architectures. Similarly, collab-

orative mapping should leverage the same ethos by managing representations of the

environment through decentralized mapping modules and refining maps through com-

munication among agents. The decentralized architecture also allows for distributed

computation, which extracts deep features from raw sensor measurements, reducing the

computational load of map synthesis in other agents and facilitating post-processing in
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cloud computation platforms. Designing a decentralized and distributed collaborative

mapping system requires determining the level of abstraction to be computed in each

agent and shared via communication, considering task difficulties as well as available

computational and memory resources.



176

References

[1] E. van Henten, C. Montenegro, M. Popovic, S. Vougioukas, A. Daniel, and G.

Han. “Embracing Robotics and Intelligent Machine Systems for Smart Agricul-

tural Applications [From the Guest Editors]”. In: IEEE Robotics & Automation

Magazine 30.4 (2023), pp. 8–112.

[2] J. Weyler, T. Läbe, J. Behley, and C. Stachniss. “Panoptic Segmentation With

Partial Annotations for Agricultural Robots”. In: IEEE Robotics and Automation

Letters 9.2 (2024), pp. 1660–1667.

[3] W. Tabib, K. Goel, J. Yao, C. Boirum, and N. Michael. “Autonomous cave sur-

veying with an aerial robot”. In: IEEE Transactions on Robotics 38.2 (2021),

pp. 1016–1032.

[4] D. Baril, S.-P. Deschênes, O. Gamache, M. Vaidis, D. LaRocque, J. Laconte,

V. Kubelka, P. Giguère, and F. Pomerleau. “Kilometer-scale autonomous nav-

igation in subarctic forests: challenges and lessons learned”. In: arXiv preprint

arXiv:2111.13981 (2021).

[5] M. Chiou, G.-T. Epsimos, G. Nikolaou, P. Pappas, G. Petousakis, S. Mühl, and

R. Stolkin. “Robot-assisted nuclear disaster response: Report and insights from a

field exercise”. In: 2022 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE. 2022, pp. 4545–4552.

[6] Mars Helicopter. science.nasa.gov/mission/mars- 2020- perseverance/

ingenuity-mars-helicopter. [Online; accessed 25-May-2024].

[7] P. Arm, G. Waibel, J. Preisig, T. Tuna, R. Zhou, V. Bickel, G. Ligeza, T. Miki,

F. Kehl, H. Kolvenbach, et al. “Scientific exploration of challenging planetary

analog environments with a team of legged robots”. In: Science robotics 8.80

(2023), eade9548.

science.nasa.gov/mission/mars-2020-perseverance/ingenuity-mars-helicopter
science.nasa.gov/mission/mars-2020-perseverance/ingenuity-mars-helicopter


References 177

[8] C. Campos, R. Elvira, J. J. G. Rodrıéguez, J. M. Montiel, and J. D. Tardós. “Orb-

slam3: An accurate open-source library for visual, visual–inertial, and multimap

slam”. In: IEEE Transactions on Robotics 37.6 (2021), pp. 1874–1890.

[9] R. Mur-Artal and J. D. Tardós. “Orb-slam2: An open-source slam system for

monocular, stereo, and rgb-d cameras”. In: IEEE transactions on robotics 33.5

(2017), pp. 1255–1262.

[10] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. “ORB-SLAM: a versatile

and accurate monocular SLAM system”. In: IEEE transactions on robotics 31.5

(2015), pp. 1147–1163.

[11] T. Qin, P. Li, and S. Shen. “Vins-mono: A robust and versatile monocular visual-

inertial state estimator”. In: IEEE Transactions on Robotics 34.4 (2018), pp. 1004–

1020.

[12] B. Zhou, Y. Zhang, X. Chen, and S. Shen. “FUEL: Fast UAV exploration using

incremental frontier structure and hierarchical planning”. In: IEEE Robotics and

Automation Letters 6.2 (2021), pp. 779–786.

[13] B. Zhou, H. Xu, and S. Shen. “Racer: Rapid collaborative exploration with a

decentralized multi-uav system”. In: IEEE Transactions on Robotics (2023).

[14] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao. “Ego-planner: An esdf-free gradient-

based local planner for quadrotors”. In: IEEE Robotics and Automation Letters

6.2 (2020), pp. 478–485.

[15] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, and

L. Carlone. “Kimera: From SLAM to spatial perception with 3D dynamic scene

graphs”. In: The International Journal of Robotics Research 40.12-14 (2021),

pp. 1510–1546.

[16] Y. Tian, Y. Chang, F. H. Arias, C. Nieto-Granda, J. P. How, and L. Carlone.

“Kimera-multi: Robust, distributed, dense metric-semantic slam for multi-robot

systems”. In: IEEE Transactions on Robotics 38.4 (2022).

[17] A. Asgharivaskasi and N. Atanasov. “Semantic OcTree Mapping and Shannon

Mutual Information Computation for Robot Exploration”. In: IEEE Transactions

on Robotics 39.3 (2023), pp. 1910–1928. doi: 10.1109/TRO.2023.3245986.

[18] S. Peng, K. Genova, C. Jiang, A. Tagliasacchi, M. Pollefeys, T. Funkhouser, et al.

“Openscene: 3d scene understanding with open vocabularies”. In: Proceedings of

https://doi.org/10.1109/TRO.2023.3245986


178 References

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023,

pp. 815–824.

[19] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P.

Fong, J. Gale, M. Halpenny, G. Hoffmann, et al. “Stanley: The robot that won

the DARPA Grand Challenge”. In: Journal of field Robotics 23.9 (2006), pp. 661–

692.

[20] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D.

Duggins, T. Galatali, C. Geyer, et al. “Autonomous driving in urban environ-

ments: Boss and the urban challenge”. In: Journal of Field Robotics 25.8 (2008),

pp. 425–466.

[21] Z. Liu, F. Zhang, and X. Hong. “Low-cost retina-like robotic lidars based on

incommensurable scanning”. In: IEEE/ASME Transactions on Mechatronics 27.1

(2021), pp. 58–68.

[22] Y. Li and J. Ibanez-Guzman. “Lidar for autonomous driving: The principles,

challenges, and trends for automotive lidar and perception systems”. In: IEEE

Signal Processing Magazine 37.4 (2020), pp. 50–61.

[23] Livox MID-360. https://www.livoxtech.com/mid- 360. [Online; accessed

26-May-2024].

[24] A. J. Davison. “FutureMapping: The computational structure of spatial AI sys-

tems”. In: arXiv preprint arXiv:1803.11288 (2018).

[25] H. D. Whyte. “Simultaneous localisation and mapping (SLAM): Part I the essen-

tial algorithms”. In: Robotics and Automation Magazine (2006).

[26] D. Durrant-Whyte Hugh and Rye and E. Nebot. “Localization of Autonomous

Guided Vehicles”. In: Robotics Research. London: Springer London, 1996, pp. 613–

625.

[27] J. A. Castellanos, J. M. Martıénez, J. Neira, and J. D. Tardós. “Experiments in

multisensor mobile robot localization and map building”. In: IFAC Proceedings

Volumes 31.3 (1998), pp. 369–374.

[28] N. Ayache and O. D. Faugeras. “Building, registrating, and fusing noisy visual

maps”. In: The International Journal of Robotics Research 7.6 (1988), pp. 45–65.

[29] J. A. Castellanos, J. D. Tardós, and G. Schmidt. “Building a global map of the

environment of a mobile robot: The importance of correlations”. In: Proceedings

https://www.livoxtech.com/mid-360


References 179

of International Conference on Robotics and Automation. Vol. 2. IEEE. 1997,

pp. 1053–1059.

[30] J. Guivant, E. Nebot, and S. Baiker. “Localization and map building using laser

range sensors in outdoor applications”. In: Journal of robotic systems 17.10 (2000),

pp. 565–583.

[31] J. J. Leonard and H. J. S. Feder. “A computationally efficient method for large-

scale concurrent mapping and localization”. In: Robotics Research: The Ninth

International Symposium. Springer. 2000, pp. 169–176.

[32] K. S. Chong and L. Kleeman. “Feature-based mapping in real, large scale envi-

ronments using an ultrasonic array”. In: The International Journal of Robotics

Research 18.1 (1999), pp. 3–19.

[33] J. Zhang and S. Singh. “LOAM: Lidar Odometry and Mapping in Real-time.” In:

Robotics: Science and Systems. Vol. 2. 9. 2014.

[34] J. A. Hesch, F. M. Mirzaei, G. L. Mariottini, and S. I. Roumeliotis. “A Laser-

aided Inertial Navigation System (L-INS) for human localization in unknown

indoor environments”. In: 2010 IEEE International Conference on Robotics and

Automation. IEEE. 2010, pp. 5376–5382.

[35] Z. Cheng, D. Liu, Y. Yang, T. Ling, X. Chen, L. Zhang, J. Bai, Y. Shen, L. Miao,

and W. Huang. “Practical phase unwrapping of interferometric fringes based on

unscented Kalman filter technique”. In: Optics express 23.25 (2015), pp. 32337–

32349.

[36] W. Zhen, S. Zeng, and S. Soberer. “Robust localization and localizability estima-

tion with a rotating laser scanner”. In: 2017 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2017, pp. 6240–6245.

[37] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang. “LIC-Fusion: LiDAR-Inertial-

Camera Odometry”. In: 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). 2019, pp. 5848–5854. doi: 10.1109/IROS40897.

2019.8967746.

[38] C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu. “LINS: A Lidar-

Inertial State Estimator for Robust and Efficient Navigation”. In: 2020 IEEE In-

ternational Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 8899–

8906.

https://doi.org/10.1109/IROS40897.2019.8967746
https://doi.org/10.1109/IROS40897.2019.8967746


180 References

[39] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang. “LIPS: Lidar-inertial 3d plane

slam”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE. 2018, pp. 123–130.

[40] H. Ye, Y. Chen, and M. Liu. “Tightly coupled 3d lidar inertial odometry and map-

ping”. In: 2019 International Conference on Robotics and Automation (ICRA).

IEEE. 2019, pp. 3144–3150.

[41] F. Moosmann and C. Stiller. “Velodyne slam”. In: 2011 ieee intelligent vehicles

symposium (iv). IEEE. 2011, pp. 393–398.

[42] J. Zhang and S. Singh. “Low-drift and real-time lidar odometry and mapping”.

In: Autonomous Robots 41 (2017), pp. 401–416.

[43] T. Shan and B. Englot. “Lego-loam: Lightweight and ground-optimized lidar

odometry and mapping on variable terrain”. In: 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 4758–

4765.

[44] L. Zhou, D. Koppel, and M. Kaess. “LiDAR SLAM with plane adjustment for

indoor environment”. In: IEEE Robotics and Automation Letters 6.4 (2021),

pp. 7073–7080.

[45] L. Zhou, S. Wang, and M. Kaess. “π-LSAM: LiDAR smoothing and mapping

with planes”. In: 2021 IEEE international conference on robotics and automation

(ICRA). IEEE. 2021, pp. 5751–5757.

[46] Z. Liu and F. Zhang. “Balm: Bundle adjustment for lidar mapping”. In: IEEE

Robotics and Automation Letters 6.2 (2021), pp. 3184–3191.

[47] L. Zhou, G. Huang, Y. Mao, J. Yu, S. Wang, and M. Kaess. “PLC-LiSLAM:

LiDAR SLAM With Planes, Lines, and Cylinders”. In: IEEE Robotics and Au-

tomation Letters 7.3 (2022), pp. 7163–7170.

[48] C. Chen, H. Wu, Y. Ma, J. Lv, L. Li, and Y. Liu. “LiDAR-Inertial SLAM with

Efficiently Extracted Planes”. In: 2023 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE. 2023, pp. 1497–1504.

[49] K. Li, M. Li, and U. D. Hanebeck. “Towards High-Performance Solid-State-

LiDAR-Inertial Odometry and Mapping”. In: IEEE Robotics and Automation

Letters 6.3 (2021), pp. 5167–5174. doi: 10.1109/LRA.2021.3070251.

https://doi.org/10.1109/LRA.2021.3070251


References 181

[50] J. Lin and F. Zhang. “Loam livox: A fast, robust, high-precision LiDAR odometry

and mapping package for LiDARs of small FoV”. In: 2020 IEEE International

Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 3126–3131.

[51] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross. “Surfels: Surface elements as

rendering primitives”. In: Proceedings of the 27th annual conference on Computer

graphics and interactive techniques. 2000, pp. 335–342.

[52] T. Weise, T. Wismer, B. Leibe, and L. Van Gool. “Online loop closure for real-

time interactive 3D scanning”. In: Computer Vision and Image Understanding

115.5 (2011), pp. 635–648.

[53] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb. “Real-

time 3d reconstruction in dynamic scenes using point-based fusion”. In: 2013

International Conference on 3D Vision-3DV 2013. IEEE. 2013, pp. 1–8.

[54] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. “Real-time 3D reconstruc-

tion at scale using voxel hashing”. In: ACM Transactions on Graphics (ToG) 32.6

(2013), pp. 1–11.

[55] R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison. “Dense planar

SLAM”. In: 2014 IEEE international symposium on mixed and augmented reality

(ISMAR). IEEE. 2014, pp. 157–164.

[56] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDon-

ald. “Real-time large-scale dense RGB-D SLAM with volumetric fusion”. In: The

International Journal of Robotics Research 34.4-5 (2015), pp. 598–626.

[57] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison.

“ElasticFusion: Dense SLAM without a pose graph.” In: Robotics: science and

systems. Vol. 11. Rome, Italy. 2015, p. 3.

[58] J. Behley and C. Stachniss. “Efficient Surfel-Based SLAM using 3D Laser Range

Data in Urban Environments.” In: Robotics: Science and Systems. Vol. 2018. 2018,

p. 59.

[59] D. Droeschel, M. Schwarz, and S. Behnke. “Continuous mapping and localization

for autonomous navigation in rough terrain using a 3D laser scanner”. In: Robotics

and Autonomous Systems 88 (2017), pp. 104–115.

[60] J. Quenzel and S. Behnke. “Real-time multi-adaptive-resolution-surfel 6D LiDAR

odometry using continuous-time trajectory optimization”. In: 2021 IEEE/RSJ



182 References

International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021,

pp. 5499–5506.

[61] C. Park, S. Kim, P. Moghadam, C. Fookes, and S. Sridharan. “Probabilistic surfel

fusion for dense LiDAR mapping”. In: Proceedings of the IEEE International

Conference on Computer Vision Workshops. 2017, pp. 2418–2426.

[62] C. Park, P. Moghadam, J. L. Williams, S. Kim, S. Sridharan, and C. Fookes.

“Elasticity meets continuous-time: Map-centric dense 3D LiDAR SLAM”. In:

IEEE Transactions on Robotics 38.2 (2021), pp. 978–997.

[63] C. Yuan, W. Xu, X. Liu, X. Hong, and F. Zhang. “Efficient and probabilistic

adaptive voxel mapping for accurate online lidar odometry”. In: IEEE Robotics

and Automation Letters 7.3 (2022), pp. 8518–8525.

[64] C. Wu, Y. You, Y. Yuan, X. Kong, Y. Zhang, Q. Li, and K. Zhao. “VoxelMap++:

Mergeable Voxel Mapping Method for Online LiDAR (-Inertial) Odometry”. In:

IEEE Robotics and Automation Letters 9.1 (2023), pp. 427–434.

[65] Z. Liu, X. Liu, and F. Zhang. “Efficient and consistent bundle adjustment on

lidar point clouds”. In: IEEE Transactions on Robotics (2023).

[66] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss. “Range image-based

LiDAR localization for autonomous vehicles”. In: 2021 IEEE International Con-

ference on Robotics and Automation (ICRA). IEEE. 2021, pp. 5802–5808.

[67] S. Pütz, T. Wiemann, and J. Hertzberg. “The mesh tools package–introducing

annotated 3d triangle maps in ros”. In: Robotics and Autonomous Systems 138

(2021), p. 103688.

[68] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P.

Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. “Kinectfusion: Real-time dense

surface mapping and tracking”. In: 2011 10th IEEE international symposium on

mixed and augmented reality. Ieee. 2011, pp. 127–136.

[69] W. E. Lorensen and H. E. Cline. “Marching cubes: A high resolution 3D surface

construction algorithm”. In: Seminal graphics: pioneering efforts that shaped the

field. 1998, pp. 347–353.

[70] J. Chen, D. Bautembach, and S. Izadi. “Scalable real-time volumetric surface

reconstruction.” In: ACM Trans. Graph. 32.4 (2013), pp. 113–1.



References 183

[71] O. Kähler, V. Prisacariu, J. Valentin, and D. Murray. “Hierarchical voxel block

hashing for efficient integration of depth images”. In: IEEE Robotics and Automa-

tion Letters 1.1 (2015), pp. 192–197.

[72] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. Kelly, and S. Leutenegger. “Ef-

ficient octree-based volumetric SLAM supporting signed-distance and occupancy

mapping”. In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 1144–1151.

[73] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray. “Very

high frame rate volumetric integration of depth images on mobile devices”. In:

IEEE transactions on visualization and computer graphics 21.11 (2015), pp. 1241–

1250.

[74] M. Klingensmith, I. Dryanovski, S. S. Srinivasa, and J. Xiao. “Chisel: Real Time

Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed

Signed Distance Fields.” In: Robotics: science and systems. Vol. 4. 1. Citeseer.

2015.

[75] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. “Voxblox: Incre-

mental 3d euclidean signed distance fields for on-board mav planning”. In: 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE. 2017, pp. 1366–1373.

[76] M. Kazhdan, M. Bolitho, and H. Hoppe. “Poisson surface reconstruction”. In:

Proceedings of the fourth Eurographics symposium on Geometry processing. Vol. 7.

4. 2006.

[77] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. “Poisson surface

reconstruction for LiDAR odometry and mapping”. In: 2021 IEEE international

conference on robotics and automation (ICRA). IEEE. 2021, pp. 5624–5630.

[78] J. Lin, C. Yuan, Y. Cai, H. Li, Y. Ren, Y. Zou, X. Hong, and F. Zhang. “Immesh:

An immediate lidar localization and meshing framework”. In: IEEE Transactions

on Robotics (2023).

[79] P. Biber and W. Straßer. “The normal distributions transform: A new approach to

laser scan matching”. In: Proceedings 2003 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). Vol. 3.

IEEE. 2003, pp. 2743–2748.



184 References

[80] M. Magnusson, A. Lilienthal, and T. Duckett. “Scan registration for autonomous

mining vehicles using 3D-NDT”. In: Journal of Field Robotics 24.10 (2007),

pp. 803–827.

[81] M. Magnusson. “The three-dimensional normal-distributions transform: an effi-

cient representation for registration, surface analysis, and loop detection”. PhD

thesis. Örebro universitet, 2009.

[82] S. Zhao, Z. Fang, H. Li, and S. Scherer. “A robust laser-inertial odometry and

mapping method for large-scale highway environments”. In: 2019 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS). IEEE. 2019,

pp. 1285–1292.

[83] M. Yokozuka, K. Koide, S. Oishi, and A. Banno. “LiTAMIN2: Ultra light LiDAR-

based SLAM using geometric approximation applied with KL-divergence”. In:

2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE.

2021, pp. 11619–11625.

[84] M. Magnusson, A. Nuchter, C. Lorken, A. J. Lilienthal, and J. Hertzberg. “Evalu-

ation of 3D registration reliability and speed-A comparison of ICP and NDT”. In:

2009 IEEE International Conference on Robotics and Automation. IEEE. 2009,

pp. 3907–3912.

[85] R. W. Wolcott and R. M. Eustice. “Fast LIDAR localization using multiresolution

Gaussian mixture maps”. In: 2015 IEEE international conference on robotics and

automation (ICRA). IEEE. 2015, pp. 2814–2821.

[86] R. W. Wolcott and R. M. Eustice. “Robust LIDAR localization using multires-

olution Gaussian mixture maps for autonomous driving”. In: The International

Journal of Robotics Research 36.3 (2017), pp. 292–319.

[87] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz. “Accelerated genera-

tive models for 3D point cloud data”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016, pp. 5497–5505.

[88] S. Srivastava and N. Michael. “Approximate continuous belief distributions for

precise autonomous inspection”. In: 2016 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR). IEEE. 2016, pp. 74–80.

[89] X. Chen, A. Milioto, E. Palazzolo, P. Giguere, J. Behley, and C. Stachniss.

“Suma++: Efficient lidar-based semantic slam”. In: 2019 IEEE/RSJ International



References 185

Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 4530–

4537.

[90] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. “Rangenet++: Fast and accurate

lidar semantic segmentation”. In: 2019 IEEE/RSJ international conference on

intelligent robots and systems (IROS). IEEE. 2019, pp. 4213–4220.

[91] C. Bai, T. Xiao, Y. Chen, H. Wang, F. Zhang, and X. Gao. “Faster-LIO: Lightweight

tightly coupled LiDAR-inertial odometry using parallel sparse incremental vox-

els”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 4861–4868.

[92] J. L. Bentley. “Multidimensional binary search trees used for associative search-

ing”. In: Communications of the ACM 18.9 (1975), pp. 509–517.

[93] C. L. Jackins and S. L. Tanimoto. “Oct-trees and their use in representing three-

dimensional objects”. In: Computer Graphics and Image Processing 14.3 (1980),

pp. 249–270.

[94] J. L. Vermeulen, A. Hillebrand, and R. Geraerts. “A comparative study of k-

nearest neighbour techniques in crowd simulation”. In: Computer Animation and

Virtual Worlds 28.3-4 (2017), e1775.

[95] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[96] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. “Oc-

toMap: An efficient probabilistic 3D mapping framework based on octrees”. In:

Autonomous robots 34.3 (2013), pp. 189–206.

[97] A. Elfes. “Sonar-based real-world mapping and navigation”. In: IEEE Journal on

Robotics and Automation 3.3 (1987), pp. 249–265.

[98] H. P. Moravec. “Sensor fusion in certainty grids for mobile robots”. In: AI maga-

zine 9.2 (1988), pp. 61–61.

[99] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto. “Voxblox: Incremen-

tal 3D Euclidean Signed Distance Fields for on-board MAV planning”. In: 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2017, pp. 1366–1373. doi: 10.1109/IROS.2017.8202315.

[100] L. Han, F. Gao, B. Zhou, and S. Shen. “FIESTA: Fast Incremental Euclidean Dis-

tance Fields for Online Motion Planning of Aerial Robots”. In: 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). 2019, pp. 4423–

4430. doi: 10.1109/IROS40897.2019.8968199.

https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/IROS40897.2019.8968199


186 References

[101] S. T. O’Callaghan and F. T. Ramos. “Gaussian process occupancy maps”. In: The

International Journal of Robotics Research 31.1 (2012), pp. 42–62.

[102] M. Veeck and W. Veeck. “Learning polyline maps from range scan data acquired

with mobile robots”. In: 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 2. IEEE. 2004,

pp. 1065–1070.

[103] M. Paskin and S. Thrun. “Robotic mapping with polygonal random fields”. In:

arXiv preprint arXiv:1207.1399 (2012).

[104] S. Kim and J. Kim. “GPmap: A unified framework for robotic mapping based on

sparse Gaussian processes”. In: Field and service robotics. Springer. 2015, pp. 319–

332.

[105] J. Wang and B. Englot. “Fast, accurate gaussian process occupancy maps via test-

data octrees and nested bayesian fusion”. In: 2016 IEEE International Conference

on Robotics and Automation (ICRA). IEEE. 2016, pp. 1003–1010.

[106] K. Doherty, T. Shan, J. Wang, and B. Englot. “Learning-aided 3-D occupancy

mapping with Bayesian generalized kernel inference”. In: IEEE Transactions on

Robotics 35.4 (2019), pp. 953–966.

[107] J. P. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal. “3D normal

distributions transform occupancy maps: An efficient representation for mapping

in dynamic environments”. In: The International Journal of Robotics Research

32.14 (2013), pp. 1627–1644.

[108] A.-A. Agha-Mohammadi, E. Heiden, K. Hausman, and G. Sukhatme. “Confidence-

rich grid mapping”. In: The International Journal of Robotics Research 38.12-13

(2019), pp. 1352–1374.

[109] F. Ramos and L. Ott. “Hilbert maps: Scalable continuous occupancy mapping

with stochastic gradient descent”. In: The International Journal of Robotics Re-

search 35.14 (2016), pp. 1717–1730.

[110] K. Doherty, J. Wang, and B. Englot. “Probabilistic map fusion for fast, incre-

mental occupancy mapping with 3d hilbert maps”. In: 2016 IEEE international

conference on robotics and automation (ICRA). IEEE. 2016, pp. 1011–1018.



References 187

[111] V. Guizilini and F. Ramos. “Large-scale 3d scene reconstruction with hilbert

maps”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE. 2016, pp. 3247–3254.

[112] W. Zhi, L. Ott, R. Senanayake, and F. Ramos. “Continuous occupancy map fusion

with fast bayesian hilbert maps”. In: 2019 International Conference on Robotics

and Automation (ICRA). IEEE. 2019, pp. 4111–4117.

[113] S. Srivastava and N. Michael. “Efficient, multifidelity perceptual representations

via hierarchical gaussian mixture models”. In: IEEE Transactions on Robotics

35.1 (2018), pp. 248–260.

[114] C. O’Meadhra, W. Tabib, and N. Michael. “Variable resolution occupancy map-

ping using gaussian mixture models”. In: IEEE Robotics and Automation Letters

4.2 (2018), pp. 2015–2022.

[115] P. Fankhauser and M. Hutter. “A universal grid map library: Implementation

and use case for rough terrain navigation”. In: Robot Operating System (ROS)

The Complete Reference (Volume 1) (2016), pp. 99–120.

[116] Y. Ren, Y. Cai, F. Zhu, S. Liang, and F. Zhang. “ROG-map: An efficient robocen-

tric occupancy grid map for large-scene and high-resolution LiDAR-based motion

planning”. In: arXiv preprint arXiv:2302.14819 (2023).

[117] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. “Real-time 3D reconstruc-

tion at scale using voxel hashing”. In: ACM Transactions on Graphics (ToG) 32.6

(2013), pp. 1–11.

[118] C. Ericson. Real-time collision detection. Crc Press, 2004.

[119] G. K. Kraetzschmar, G. P. Gassull, and K. Uhl. “Probabilistic quadtrees for

variable-resolution mapping of large environments”. In: IFAC Proceedings Vol-

umes 37.8 (2004), pp. 675–680.

[120] K. M. Wurm, D. Hennes, D. Holz, R. B. Rusu, C. Stachniss, K. Konolige, and W.

Burgard. “Hierarchies of octrees for efficient 3d mapping”. In: 2011 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems. IEEE. 2011, pp. 4249–

4255.

[121] E. Einhorn, C. Schröter, and H.-M. Gross. “Finding the adequate resolution for

grid mapping-cell sizes locally adapting on-the-fly”. In: 2011 IEEE International

Conference on Robotics and Automation. IEEE. 2011, pp. 1843–1848.



188 References

[122] D. Duberg and P. Jensfelt. “UFOMap: An efficient probabilistic 3D mapping

framework that embraces the unknown”. In: IEEE Robotics and Automation Let-

ters 5.4 (2020), pp. 6411–6418.

[123] N. Funk, J. Tarrio, S. Papatheodorou, M. Popović, P. F. Alcantarilla, and S.

Leutenegger. “Multi-resolution 3D mapping with explicit free space representa-

tion for fast and accurate mobile robot motion planning”. In: IEEE Robotics and

Automation Letters 6.2 (2021), pp. 3553–3560.

[124] Y. Cai, F. Kong, Y. Ren, F. Zhu, J. Lin, and F. Zhang. “Occupancy Grid Mapping

Without Ray-Casting for High-Resolution LiDAR Sensors”. In: IEEE Transac-

tions on Robotics (2023).

[125] A. Guttman. “R-trees: A dynamic index structure for spatial searching”. In: Pro-

ceedings of the 1984 ACM SIGMOD international conference on Management of

data. 1984, pp. 47–57.

[126] P. Z. X. Li, S. Karaman, and V. Sze. “GMMap: Memory-Efficient Continuous Oc-

cupancy Map Using Gaussian Mixture Model”. In: IEEE Transactions on Robotics

(2024).

[127] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best

matches in logarithmic time. Department of Computer Science, Stanford Univer-

sity, 1975.

[128] A. Nuchter, K. Lingemann, and J. Hertzberg. “Cached kd tree search for ICP

algorithms”. In: Sixth International Conference on 3-D Digital Imaging and Mod-

eling (3DIM 2007). IEEE. 2007, pp. 419–426.

[129] A. Segal, D. Haehnel, and S. Thrun. “Generalized-icp.” In: Robotics: science and

systems. Vol. 2. 4. Seattle, WA. 2009, p. 435.

[130] W. Xu and F. Zhang. “Fast-lio: A fast, robust lidar-inertial odometry package by

tightly-coupled iterated kalman filter”. In: IEEE Robotics and Automation Letters

6.2 (2021), pp. 3317–3324.

[131] J. Ichnowski and R. Alterovitz. “Fast nearest neighbor search in SE (3) for

sampling-based motion planning”. In: Algorithmic Foundations of Robotics XI.

Springer, 2015, pp. 197–214.



References 189

[132] F. Gao and S. Shen. “Online quadrotor trajectory generation and autonomous

navigation on point clouds”. In: 2016 IEEE International Symposium on Safety,

Security, and Rescue Robotics (SSRR). IEEE. 2016, pp. 139–146.

[133] B. T. Lopez and J. P. How. “Aggressive 3-D collision avoidance for high-speed

navigation.” In: ICRA. 2017, pp. 5759–5765.

[134] P. R. Florence, J. Carter, J. Ware, and R. Tedrake. “Nanomap: Fast, uncertainty-

aware proximity queries with lazy search over local 3d data”. In: 2018 IEEE Inter-

national Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 7631–

7638.

[135] F. Gao, W. Wu, W. Gao, and S. Shen. “Flying on point clouds: Online trajectory

generation and autonomous navigation for quadrotors in cluttered environments”.

In: Journal of Field Robotics 36.4 (2019), pp. 710–733.

[136] J. Ji, Z. Wang, Y. Wang, C. Xu, and F. Gao. “Mapless-planner: A robust and

fast planning framework for aggressive autonomous flight without map fusion”.

In: 2021 IEEE International Conference on Robotics and Automation (ICRA).

IEEE. 2021, pp. 6315–6321.

[137] R. B. Rusu and S. Cousins. “3d is here: Point cloud library (pcl)”. In: 2011 IEEE

international conference on robotics and automation. IEEE. 2011, pp. 1–4.

[138] R. Bayer. “Symmetric binary B-trees: Data structure and maintenance algo-

rithms”. In: Acta informatica 1.4 (1972), pp. 290–306.

[139] C. R. Aragon and R. Seidel. “Randomized search trees”. In: FOCS. Vol. 30. 1989,

pp. 540–545.

[140] D. D. Sleator and R. E. Tarjan. “Self-adjusting binary search trees”. In: Journal

of the ACM (JACM) 32.3 (1985), pp. 652–686.

[141] W. Hunt, W. R. Mark, and G. Stoll. “Fast kd-tree construction with an adaptive

error-bounded heuristic”. In: 2006 IEEE Symposium on Interactive Ray Tracing.

IEEE. 2006, pp. 81–88.

[142] S. Popov, J. Gunther, H.-P. Seidel, and P. Slusallek. “Experiences with streaming

construction of SAH KD-trees”. In: 2006 IEEE Symposium on Interactive Ray

Tracing. IEEE. 2006, pp. 89–94.



190 References

[143] M. Shevtsov, A. Soupikov, and A. Kapustin. “Highly Parallel Fast KD-tree Con-

struction for Interactive Ray Tracing of Dynamic Scenes”. In: Computer Graph-

ics Forum 26.3 (2007), pp. 395–404. issn: 0167-7055. doi: 10.1111/j.1467-

8659.2007.01062.x.

[144] K. Zhou, Q. Hou, R. Wang, and B. Guo. “Real-time KD-tree construction on

graphics hardware”. In: ACM Transactions on Graphics 27.5 (2008), pp. 1–11.

issn: 0730-0301. doi: 10.1145/1409060.1409079.

[145] J. L. Bentley and J. B. Saxe. “Decomposable searching problems I: Static-to-

dynamic transformation”. In: J. algorithms 1.4 (1980), pp. 301–358.

[146] I. Galperin and R. L. Rivest. “Scapegoat Trees.” In: SODA. Vol. 93. 1993, pp. 165–

174.

[147] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. “Bkd-tree: A dynamic scal-

able kd-tree”. In: International Symposium on Spatial and Temporal Databases.

Springer. 2003, pp. 46–65.

[148] J. T. Robinson. “The KDB-tree: a search structure for large multidimensional

dynamic indexes”. In: Proceedings of the 1981 ACM SIGMOD international con-

ference on Management of data. 1981, pp. 10–18.

[149] M. Muja and D. G. Lowe. “Fast approximate nearest neighbors with automatic

algorithm configuration.” In: VISAPP (1) 2.331-340 (2009), p. 2.

[150] M. Muja and D. Lowe. “Flann-fast library for approximate nearest neighbors

user manual”. In: Computer Science Department, University of British Columbia,

Vancouver, BC, Canada (2009).

[151] P. Chanzy, L. Devroye, and C. Zamora-Cura. “Analysis of range search for ran-

dom kd trees”. In: Acta informatica 37.4-5 (2001), pp. 355–383.

[152] Z. Liu, F. Zhang, and X. Hong. “Low-cost Retina-like Robotic Lidars Based

on Incommensurable Scanning”. In: IEEE/ASME Transactions on Mechatronics

(2021), pp. 1–1. doi: 10.1109/TMECH.2021.3058173.

[153] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza. “SVO:

Semidirect visual odometry for monocular and multicamera systems”. In: IEEE

Transactions on Robotics 33.2 (2016), pp. 249–265.

https://doi.org/10.1111/j.1467-8659.2007.01062.x
https://doi.org/10.1111/j.1467-8659.2007.01062.x
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1109/TMECH.2021.3058173


References 191

[154] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. “On-Manifold Prein-

tegration for Real-Time Visual–Inertial Odometry”. In: IEEE Transactions on

Robotics 33.1 (2016), pp. 1–21.

[155] C. Campos, R. Elvira, J. J. G. Rodrıéguez, J. M. Montiel, and J. D. Tardós.

“ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial,

and Multimap SLAM”. In: IEEE Transactions on Robotics (2021).

[156] R. Newcombe. “Dense visual SLAM”. PhD thesis. Imperial College London, 2012.

[157] M. Meilland, C. Barat, and A. Comport. “3d high dynamic range dense visual

slam and its application to real-time object re-lighting”. In: 2013 IEEE Inter-

national Symposium on Mixed and Augmented Reality (ISMAR). IEEE. 2013,

pp. 143–152.

[158] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison. “CodeSLAM—learning

a compact, optimisable representation for dense visual SLAM”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2018, pp. 2560–

2568.

[159] C. Kerl, J. Sturm, and D. Cremers. “Dense visual SLAM for RGB-D cameras”.

In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE. 2013, pp. 2100–2106.

[160] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,

D. Langer, O. Pink, V. Pratt, et al. “Towards fully autonomous driving: Systems

and algorithms”. In: 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2011,

pp. 163–168.

[161] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and

V. Kumar. “Planning dynamically feasible trajectories for quadrotors using safe

flight corridors in 3-d complex environments”. In: IEEE Robotics and Automation

Letters 2.3 (2017), pp. 1688–1695.

[162] D. Wang, C. Watkins, and H. Xie. “MEMS Mirrors for LiDAR: A review”. In:

Micromachines 11.5 (2020), p. 456.

[163] K. Li, M. Li, and U. D. Hanebeck. “Towards high-performance solid-state-lidar-

inertial odometry and mapping”. In: IEEE Robotics and Automation Letters 6.3

(2021), pp. 5167–5174.



192 References

[164] J. Lin and F. Zhang. “A fast, complete, point cloud based loop closure for lidar

odometry and mapping”. In: arXiv preprint arXiv:1909.11811 (2019).

[165] H. Wang, C. Wang, and L. Xie. “Lightweight 3-D Localization and Mapping

for Solid-State LiDAR”. In: IEEE Robotics and Automation Letters 6.2 (2021),

pp. 1801–1807.

[166] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct monocular

visual odometry”. In: 2014 IEEE international conference on robotics and au-

tomation (ICRA). IEEE. 2014, pp. 15–22.

[167] G. C. Sharp, S. W. Lee, and D. K. Wehe. “ICP registration using invariant fea-

tures”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 24.1

(2002), pp. 90–102.

[168] K.-L. Low. “Linear least-squares optimization for point-to-plane icp surface reg-

istration”. In: Chapel Hill, University of North Carolina 4.10 (2004), pp. 1–3.

[169] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. “LIO-SAM:

Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping”. In: 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2020, pp. 5135–5142. doi: 10.1109/IROS45743.2020.9341176.

[170] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert.

“iSAM2: Incremental smoothing and mapping using the Bayes tree”. In: The

International Journal of Robotics Research 31.2 (2012), pp. 216–235.

[171] A. Tagliabue, J. Tordesillas, X. Cai, A. Santamaria-Navarro, J. P. How, L. Car-

lone, and A.-a. Agha-mohammadi. “LION: Lidar-Inertial observability-aware nav-

igator for Vision-Denied environments”. In: International Symposium on Experi-

mental Robotics. Springer. 2020, pp. 380–390.

[172] K. Koide, M. Yokozuka, S. Oishi, and A. Banno. “Voxelized gicp for fast and

accurate 3d point cloud registration”. In: EasyChair Preprint 2703 (2020).

[173] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. “The R*-tree: An

efficient and robust access method for points and rectangles”. In: Proceedings of

the 1990 ACM SIGMOD international conference on Management of data. 1990,

pp. 322–331.

[174] D. Meagher. “Geometric modeling using octree encoding”. In: Computer graphics

and image processing 19.2 (1982), pp. 129–147.

https://doi.org/10.1109/IROS45743.2020.9341176


References 193

[175] J. H. Friedman, J. L. Bentley, and R. A. Finkel. “an algorithm for finding best

matches in logarithmic expected time”. In: ACM Transactions on Mathematical

Software (TOMS) 3.3 (1977), pp. 209–226.

[176] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter. “Comparison of nearest-

neighbor-search strategies and implementations for efficient shape registration”.

In: Journal of Software Engineering for Robotics 3.1 (2012), pp. 2–12.

[177] S. Arya and D. Mount. “ANN: library for approximate nearest neighbor search-

ing”. In: Proceedings of IEEE CGC Workshop on Computational Geometry, Prov-

idence, RI. 1998.

[178] M. H. Overmars. The design of dynamic data structures. Vol. 156. Springer Sci-

ence & Business Media, 1987.

[179] J. L. Blanco and P. K. Rai. nanoflann: a C++ header-only fork of FLANN,

a library for Nearest Neighbor (NN) with KD-trees. https : / / github . com /

jlblancoc/nanoflann(v1.3.2). 2014.

[180] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder. “Integrating generic sen-

sor fusion algorithms with sound state representations through encapsulation of

manifolds”. In: Information Fusion 14.1 (2013), pp. 57–77.

[181] D. He, W. Xu, and F. Zhang. “Symbolic representation and toolkit development of

iterated error-state extended kalman filters on manifolds”. In: IEEE Transactions

on Industrial Electronics (2023).

[182] Z. Yan, L. Sun, T. Krajnik, and Y. Ruichek. “EU Long-term Dataset with Mul-

tiple Sensors for Autonomous Driving”. In: Proceedings of the 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). 2020.

[183] W. Wen, Y. Zhou, G. Zhang, S. Fahandezh-Saadi, X. Bai, W. Zhan, M. Tomizuka,

and L.-T. Hsu. “Urbanloco: a full sensor suite dataset for mapping and localiza-

tion in urban scenes”. In: 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE. 2020, pp. 2310–2316.

[184] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice. “University of Michigan

North Campus long-term vision and lidar dataset”. In: The International Journal

of Robotics Research 35.9 (2016), pp. 1023–1035.

https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann


194 References

[185] G. Barend, L. Bruno, L. Mateusz, W. Adam, K. Menelaos, and F. Vissarion.

Boost Geometry Library. https://www.boost.org/doc/libs/1_65_1/libs/

geometry/. Sept. 2017.

[186] R. B. Rusu and S. Cousins. “3d is here: Point cloud library (pcl)”. In: 2011 IEEE

international conference on robotics and automation. IEEE. 2011, pp. 1–4.

[187] G. Lu, W. Xu, and F. Zhang. “On-manifold model predictive control for trajectory

tracking on robotic systems”. In: IEEE Transactions on Industrial Electronics

70.9 (2022), pp. 9192–9202.

[188] F. Kong, W. Xu, Y. Cai, and F. Zhang. “Avoiding dynamic small obstacles with

onboard sensing and computation on aerial robots”. In: IEEE Robotics and Au-

tomation Letters 6.4 (2021), pp. 7869–7876.

[189] J. Lin, C. Zheng, W. Xu, and F. Zhang. “R2LIVE: A Robust, Real-time, LiDAR-

Inertial-Visual tightly-coupled state Estimator and mapping”. In: IEEE Robotics

and Automation Letters 6.4 (2021), pp. 7469–7476.

[190] Y. Ren, F. Zhu, W. Liu, Z. Wang, Y. Lin, F. Gao, and F. Zhang. “Bubble plan-

ner: Planning high-speed smooth quadrotor trajectories using receding corridors”.

In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2022, pp. 6332–6339.

[191] Y. Ren, S. Liang, F. Zhu, G. Lu, and F. Zhang. “Online Whole-Body Motion

Planning for Quadrotor using Multi-Resolution Search”. In: 2023 IEEE Inter-

national Conference on Robotics and Automation (ICRA). 2023, pp. 1594–1600.

doi: 10.1109/ICRA48891.2023.10160767.

[192] F. Zhu, Y. Ren, F. Kong, H. Wu, S. Liang, N. Chen, W. Xu, and F. Zhang.

“Swarm-LIO: Decentralized Swarm LiDAR-inertial Odometry”. In: 2023 IEEE

International Conference on Robotics and Automation (ICRA). 2023, pp. 3254–

3260. doi: 10.1109/ICRA48891.2023.10161355.

[193] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E.

Frazzoli, A. Huang, S. Karaman, et al. “A perception-driven autonomous urban

vehicle”. In: Journal of Field Robotics 25.10 (2008), pp. 727–774.

[194] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li. “Deep learning

for lidar point clouds in autonomous driving: A review”. In: IEEE Transactions

on Neural Networks and Learning Systems 32.8 (2020), pp. 3412–3432.

https://www.boost.org/doc/libs/1_65_1/libs/geometry/
https://www.boost.org/doc/libs/1_65_1/libs/geometry/
https://doi.org/10.1109/ICRA48891.2023.10160767
https://doi.org/10.1109/ICRA48891.2023.10161355


References 195

[195] X. Liu, Z. Liu, F. Kong, and F. Zhang. “Large-Scale LiDAR Consistent Mapping

Using Hierarchical LiDAR Bundle Adjustment”. In: IEEE Robotics and Automa-

tion Letters 8.3 (2023), pp. 1523–1530. doi: 10.1109/LRA.2023.3238902.

[196] S. Liu, M. Watterson, S. Tang, and V. Kumar. “High speed navigation for quadro-

tors with limited onboard sensing”. In: 2016 IEEE international conference on

robotics and automation (ICRA). IEEE. 2016, pp. 1484–1491.

[197] J. Tordesillas, B. T. Lopez, and J. P. How. “Faster: Fast and safe trajectory

planner for flights in unknown environments”. In: 2019 IEEE/RSJ international

conference on intelligent robots and systems (IROS). IEEE. 2019, pp. 1934–1940.

[198] Z. Zhang, T. Henderson, S. Karaman, and V. Sze. “FSMI: Fast computation of

Shannon mutual information for information-theoretic mapping”. In: The Inter-

national Journal of Robotics Research 39.9 (2020), pp. 1155–1177.

[199] A. Elfes. “Robot navigation: Integrating perception, environmental constraints

and task execution within a probabilistic framework”. In: Reasoning with Uncer-

tainty in Robotics. Springer Berlin Heidelberg, 1996, pp. 91–130. doi: 10.1007/

bfb0013955.

[200] Livox Avia User Manual. https://www.livoxtech.com/avia. Livox Technology Com-

pany Limited. Oct. 2020.

[201] S. Kim and J. Kim. “Building occupancy maps with a mixture of Gaussian pro-

cesses”. In: 2012 IEEE International Conference on Robotics and Automation.

IEEE. 2012, pp. 4756–4761.

[202] T. Duong, M. Yip, and N. Atanasov. “Autonomous Navigation in Unknown En-

vironments With Sparse Bayesian Kernel-Based Occupancy Mapping”. In: IEEE

Transactions on Robotics 38.6 (2022), pp. 3694–3712. doi: 10.1109/TRO.2022.

3177950.

[203] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. “Occu-

pancy networks: Learning 3d reconstruction in function space”. In: Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition. 2019,

pp. 4460–4470.

[204] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and

R. Ng. “Nerf: Representing scenes as neural radiance fields for view synthesis”.

In: Communications of the ACM 65.1 (2021), pp. 99–106.

https://doi.org/10.1109/LRA.2023.3238902
https://doi.org/10.1007/bfb0013955
https://doi.org/10.1007/bfb0013955
https://doi.org/10.1109/TRO.2022.3177950
https://doi.org/10.1109/TRO.2022.3177950


196 References

[205] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. “Deepsdf:

Learning continuous signed distance functions for shape representation”. In: Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition.

2019, pp. 165–174.

[206] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. “Kimera: an Open-Source Li-

brary for Real-Time Metric-Semantic Localization and Mapping”. In: 2020 IEEE

International Conference on Robotics and Automation (ICRA). 2020, pp. 1689–

1696. doi: 10.1109/ICRA40945.2020.9196885.

[207] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and M. Polle-

feys. “Nice-slam: Neural implicit scalable encoding for slam”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,

pp. 12786–12796.

[208] M. C. Martin and H. P. Moravec. Robot evidence grids. Carnegie Mellon Univer-

sity, the Robotics Institute, 1996.

[209] Y. Roth-Tabak and R. Jain. “Building an environment model using depth infor-

mation”. In: Computer 22.6 (1989), pp. 85–90.

[210] G. M. Hunter and K. Steiglitz. “Operations on images using quad trees”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 2 (1979), pp. 145–

153.

[211] P. Payeur, P. Hébert, D. Laurendeau, and C. M. Gosselin. “Probabilistic octree

modeling of a 3d dynamic environment”. In: Proceedings of International Confer-

ence on Robotics and Automation. Vol. 2. IEEE. 1997, pp. 1289–1296.

[212] M. Yguel, O. Aycard, and C. Laugier. “Update policy of dense maps: Efficient

algorithms and sparse representation”. In: Field and service robotics. Springer.

2008, pp. 23–33.

[213] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. “Ray tracing animated

scenes using coherent grid traversal”. In: ACM SIGGRAPH 2006 Papers. 2006,

pp. 485–493.

[214] Y. Kwon, D. Kim, I. An, and S.-e. Yoon. “Super rays and culling region for real-

time updates on grid-based occupancy maps”. In: IEEE Transactions on Robotics

35.2 (2019), pp. 482–497.

https://doi.org/10.1109/ICRA40945.2020.9196885


References 197

[215] J. L. Bentley and D. Wood. “An optimal worst case algorithm for reporting

intersections of rectangles”. In: IEEE Transactions on Computers 29.07 (1980),

pp. 571–577.

[216] V. K. Vaishnavi. “Computing point enclosures”. In: IEEE Transactions on Com-

puters 31.01 (1982), pp. 22–29.

[217] M. R. Spiegel, S. Lipschutz, and J. Liu. Schaum’s Outlines: Mathematical Hand-

book of Formulas and Tables. Vol. 2. McGraw-Hill, 2009.

[218] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H. Gross. “Op-

timized spatial hashing for collision detection of deformable objects.” In: Vmv.

Vol. 3. 2003, pp. 47–54.

[219] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang. “FAST-LIO2: Fast Direct LiDAR-

Inertial Odometry”. In: IEEE Transactions on Robotics 38.4 (2022), pp. 2053–

2073. doi: 10.1109/TRO.2022.3141876.

[220] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. “Vision meets robotics: The

kitti dataset”. In: The International Journal of Robotics Research 32.11 (2013),

pp. 1231–1237.

[221] F. Kong, X. Liu, B. Tang, J. Lin, Y. Ren, Y. Cai, F. Zhu, N. Chen, and F. Zhang.

“MARSIM: A light-weight point-realistic simulator for LiDAR-based UAVs”. In:

IEEE Robotics and Automation Letters 8.5 (2023), pp. 2954–2961.

[222] J. Amanatides and A. Woo. “A fast voxel traversal algorithm for ray tracing.” In:

Eurographics. Vol. 87. 3. 1987, pp. 3–10.

[223] S. Mystakidis. “Metaverse”. In: Encyclopedia 2.1 (2022), pp. 486–497.

[224] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen. “A survey

on metaverse: Fundamentals, security, and privacy”. In: IEEE Communications

Surveys & Tutorials (2022).

[225] P. Cipresso, I. A. C. Giglioli, M. A. Raya, and G. Riva. “The past, present, and

future of virtual and augmented reality research: a network and cluster analysis

of the literature”. In: Frontiers in psychology 8 (2018), p. 2086.

[226] S. Shah, D. Dey, C. Lovett, and A. Kapoor. “Airsim: High-fidelity visual and

physical simulation for autonomous vehicles”. In: Field and Service Robotics: Re-

sults of the 11th International Conference. Springer. 2018, pp. 621–635.

https://doi.org/10.1109/TRO.2022.3141876


198 References

[227] W. Tabib, K. Goel, J. Yao, C. Boirum, and N. Michael. “Autonomous cave sur-

veying with an aerial robot”. In: IEEE Transactions on Robotics 38.2 (2021),

pp. 1016–1032.

[228] K. Themistocleous, C. Mettas, E. Evagorou, and D. Hadjimitsis. “The use of

UAVs and photogrammetry for the documentation of cultural heritage monu-

ments: the case study of the churches in Cyprus”. In: Earth resources and envi-

ronmental remote sensing/GIS applications X. Vol. 11156. SPIE. 2019, pp. 85–

96.

[229] F. Zhu, Y. Ren, and F. Zhang. “Robust real-time lidar-inertial initialization”.

In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE. 2022, pp. 3948–3955.

[230] G. Lu, W. Xu, and F. Zhang. “On-Manifold Model Predictive Control for Tra-

jectory Tracking on Robotic Systems”. In: IEEE Transactions on Industrial Elec-

tronics (2022), pp. 1–10. doi: 10.1109/TIE.2022.3212397.

[231] S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous, and J. McBride. “Ford

multi-AV seasonal dataset”. In: The International Journal of Robotics Research

39.12 (2020), pp. 1367–1376.

[232] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. “A Benchmark

for the Evaluation of RGB-D SLAM Systems”. In: Proc. of the International

Conference on Intelligent Robot Systems (IROS). Oct. 2012.

[233] M. Ramezani, Y. Wang, M. Camurri, D. Wisth, M. Mattamala, and M. Fal-

lon. “The newer college dataset: Handheld lidar, inertial and vision with ground

truth”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE. 2020, pp. 4353–4360.

[234] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and J. D. Owens. “En-

gineering a high-performance gpu b-tree”. In: Proceedings of the 24th symposium

on principles and practice of parallel programming. 2019, pp. 145–157.

[235] G. Kim and A. Kim. “Scan context: Egocentric spatial descriptor for place recog-

nition within 3d point cloud map”. In: 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 4802–4809.

https://doi.org/10.1109/TIE.2022.3212397


References 199

[236] G. Kim, S. Choi, and A. Kim. “Scan context++: Structural place recognition

robust to rotation and lateral variations in urban environments”. In: IEEE Trans-

actions on Robotics 38.3 (2021), pp. 1856–1874.

[237] C. Yuan, J. Lin, Z. Zou, X. Hong, and F. Zhang. “Std: Stable triangle descriptor

for 3d place recognition”. In: 2023 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2023, pp. 1897–1903.

[238] C. Yuan, J. Lin, Z. Liu, H. Wei, X. Hong, and F. Zhang. “BTC: A Binary and

Triangle Combined Descriptor for 3D Place Recognition”. In: IEEE Transactions

on Robotics (2024).

[239] J. Komorowski. “Minkloc3d: Point cloud based large-scale place recognition”. In:

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision. 2021, pp. 1790–1799.

[240] J. Komorowski. “Improving point cloud based place recognition with ranking-

based loss and large batch training”. In: 2022 26th International Conference on

Pattern Recognition (ICPR). IEEE. 2022, pp. 3699–3705.

[241] K. Vidanapathirana, M. Ramezani, P. Moghadam, S. Sridharan, and C. Fookes.

“LoGG3D-Net: Locally guided global descriptor learning for 3D place recogni-

tion”. In: 2022 International Conference on Robotics and Automation (ICRA).

IEEE. 2022, pp. 2215–2221.

[242] J. Knights, S. Hausler, S. Sridharan, C. Fookes, and P. Moghadam. “GeoAd-

apt: Self-Supervised Test-Time Adaptation in LiDAR Place Recognition Using

Geometric Priors”. In: IEEE Robotics and Automation Letters (2023).

[243] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. “3D Gaussian Splatting

for Real-Time Radiance Field Rendering”. In: ACM Transactions on Graphics

42.4 (July 2023). url: https://repo-sam.inria.fr/fungraph/3d-gaussian-

splatting/.

[244] L. Schmid, O. Andersson, A. Sulser, P. Pfreundschuh, and R. Siegwart. “Dyn-

ablox: Real-time detection of diverse dynamic objects in complex environments”.

In: IEEE Robotics and Automation Letters (2023).

[245] H. Wu, Y. Li, W. Xu, F. Kong, and F. Zhang. “Moving event detection from

LiDAR point streams”. In: Nature Communications 15.1 (2024), p. 345.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


200 References

[246] M. Lu, H. Chen, and P. Lu. “Perception and avoidance of multiple small fast mov-

ing objects for quadrotors with only low-cost RGBD camera”. In: IEEE Robotics

and Automation Letters 7.4 (2022), pp. 11657–11664.

[247] T. Khurana, P. Hu, D. Held, and D. Ramanan. “Point Cloud Forecasting as a

Proxy for 4D Occupancy Forecasting”. In: IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2023.

[248] B. Mersch, X. Chen, I. Vizzo, L. Nunes, J. Behley, and C. Stachniss. “Receding

Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions”.

In: IEEE Robotics and Automation Letters (RA-L) 7.3 (2022), pp. 7503–7510.

[249] G. E. Moore. “Cramming more components onto integrated circuits”. In: Elec-

tronics 38.8 (1965), pp. 114–117.

[250] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. “Design of ion-implanted MOSFET’s with very small physical dimen-

sions”. In: IEEE Journal of solid-state circuits 9.5 (1974), pp. 256–268.

[251] Welcome to the Jungle. https://herbsutter.com/welcome-to-the-jungle/.

[Online; accessed 12-June-2024].

[252] Jetson Modules. https://developer.nvidia.com/embedded/jetson-modules.

[Online; accessed 13-June-2024].

[253] F. Zhu, Y. Ren, F. Kong, H. Wu, S. Liang, N. Chen, W. Xu, and F. Zhang.

“Swarm-lio: Decentralized swarm lidar-inertial odometry”. In: 2023 IEEE Inter-

national Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 3254–

3260.

[254] H. Xu, Y. Zhang, B. Zhou, L. Wang, X. Yao, G. Meng, and S. Shen. “Omni-swarm:

A decentralized omnidirectional visual–inertial–uwb state estimation system for

aerial swarms”. In: Ieee transactions on robotics 38.6 (2022), pp. 3374–3394.

https://herbsutter.com/welcome-to-the-jungle/
https://developer.nvidia.com/embedded/jetson-modules

	Abstract
	Declaration
	Acknowledgements
	Contents
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Background
	LiDAR SLAM
	State Estimation
	Mapping
	Map Representations
	Map Structures

	Challenges

	Occupancy Mapping
	Occupancy Representations
	Occupancy Map Structures
	Challenges

	Thesis Outline

	ikd-Tree: An Incremental K-D Tree for Robotic Applications
	Introduction
	Related work
	ikd-Tree Design and Implementation
	Data Structure
	Building An Incremental K-D Tree
	Incremental Updates
	Pushdown and Pullup
	Point-wise Updates
	Box-wise Updates
	Downsample

	Re-balancing
	Balancing Criterion
	Re-build
	Parallel Re-build

	K-Nearest Neighbor Search

	Complexity Analysis
	Time Complexity
	Incremental Operations
	Re-build
	Nearest Search

	Space Complexity

	Application Experiments
	Randomized Data Experiments
	LiDAR Inertial-Odometry and Mapping

	Conclusion

	FAST-LIO2: Fast Direct LiDAR-inertial Odometry
	Introduction
	Related Works
	LiDAR(-Inertial) Odometry
	Dynamic Data Structure in Mapping

	System Overview
	State Estimation
	Kinematic Model
	State Transition Model
	Measurement Model

	Iterated Kalman Filter
	Propagation
	Residual Computation
	Iterated Update


	Mapping
	Map Management
	Tree Structure and Construction
	Data Structure
	Construction

	Incremental Updates
	Point Insertion with On-tree Downsampling
	Box-wise Delete using Lazy Labels
	Attribute Update

	Re-balancing
	K-Nearest Neighbor Search

	Benchmark Results
	Implementation
	Data structure Evaluation
	Evaluation Setup
	Comparison Results

	Accuracy Evaluation
	RMSE Benchmark
	Drift Benchmark

	Processing Time Evaluation

	Real-world Experiments
	Platforms
	Private Dataset
	Detail Evaluation of Processing Time
	Aggressive UAV Flight Experiment
	Fast Motion Handheld Experiment

	Outdoor Aerial Experiment

	Discussion
	Efficiency
	Accuracy
	Robustness
	Applications

	Conclusion

	Occupancy Grid Mapping without Ray-Casting  for High-resolution LiDAR Sensors
	Introduction
	Related Works
	Occupancy Mapping Approaches
	Update Methods

	Overview
	Occupancy State Determination on Depth Image
	Depth Image Rasterization
	2-D Segment Tree
	Occupancy State Determination
	Depth Image Resolution Analysis

	Occupancy Mapping
	Occupancy Map Structure
	Hashing Grid Map
	Octree
	Initialization

	Occupancy Update
	Occupancy State Query

	Time Complexity Analysis
	Occupancy State Update
	Occupancy State Query

	Benchmark Results
	Datasets
	Evaluation Setup
	Efficiency Evaluation and Analysis
	Benchmark Results
	Efficiency Analysis

	Accuracy and Memory Evaluation
	Accuracy Benchmark
	Memory Consumption


	Real-world Applications
	Interactive Guidance for High-resolution Real-time 3D Mapping
	Experiment Setup
	Results

	Autonomous UAV Exploration
	Hardware System Setup
	Software System Implementation
	Results


	Extensions
	Occupancy Mapping in Large-scale Environment
	Map Region Sliding for D-Map
	Extension to Range Sensors with Measurement Noise
	Qualitative Evaluation
	Efficiency
	Accuracy

	Comparison against SuperEight

	Discussion
	Occupancy Mapping on Depth Image
	Efficiency
	Accuracy

	Parallel Processing over D-Map

	Conclusion

	Conclusion and Future Work
	Conclusions
	Discussion of Limitations
	Future Work
	Consistent LiDAR Mapping
	Efficient Mapping on Heterogeneous Platform
	Multi-modal Collaborative Mapping


	References

